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Abstract

This thesis considers dynamic multi-period minimum variance portfolio (MVP) op-
timization with an investor using DCC MGARCH models to forecast the conditional
covariance of asset returns. We test three variance models and model the transaction
costs as quadratic. We consider two strategies. In the first strategy, the investor seeks
a minimum variance portfolio and ignores transaction costs associated with portfolio
rebalancing (simple strategy). In the second strategy, the investor also seeks a min-
imum variance portfolio, but now the investor adjusts for the expected transaction costs
(sophisticated strategy). We derive optimal dynamic solutions for both strategies with
a closed-form solution for the simple strategy. The sophisticated strategy requires nu-
merically solving for coefficients and additional restrictions. As new information arrives,
the simple strategy immediately rebalances to the new MVP portfolio. In contrast, the
sophisticated strategy partially trades towards an aim portfolio depending on the level of
transaction costs. In gross returns, both strategies achieve a lower annualized standard
deviation than an Equal-weight strategy and a Buy-and-hold strategy. However, both
strategies only beat the Equal-weight strategy in terms of Sharpe Ratio. The simple
strategy performs poorly in net returns as high transaction costs increase the portfolio’s
standard deviation drastically because of decreasing returns. After tuning the ex-ante
transaction costs, the sophisticated strategy performs well, achieving lower annualized
standard deviation than our benchmark strategies, even after subtracting transaction
costs.
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1 Introduction

The optimal allocation of funds, whether for retail investors, banks, or institutional clients,
is a vast research topic. Given the compounding nature of returns, the difference in wealth
achievable over a long horizon with an optimal portfolio compared to a sub-optimal portfolio is
immense. Thus, it is theoretically possible to substantially improve the future living standards
of savers or profits for firms by investing optimally. The insurance and pension sector is an
excellent example of a place where better investment strategies can yield substantial welfare
gains for millions of people.

Modern portfolio theory advanced the pursuit of optimal portfolios, which the Nobel prize-
winning Harry Markowitz introduced in his seminal paper [Markowitz, 1952]. In this paper,
Markowitz introduced the now widely applied mean-variance approach. Markowitz considers
a risk-averse investor who maximizes expected returns and minimizes portfolio risk. While
the theoretical work of [Markowitz, 1952] is the foundation of countless finance papers, his
empirical implementation of the model is limited. Specifically, the approach is limited in
accuracy by estimation uncertainty in the statistical moments of asset returns, mainly mean
returns and covariances, a point we will expand upon later.

Another approach to the investor’s problem was introduced by [Merton, 1969] where he
considers multi-period continuous time models of varying time horizons for portfolio selection
of two assets - famously computing the Merton fraction. This constant optimally determines
what fraction of savings an investor should allocate to the single risky asset in the Merton
model over an investor’s lifetime. Surprisingly, the fraction is independent of time and wealth,
which reduces the multi-period problem to a static solution. The static result to the multi-
period problem is a consequence of Merton’s simple setup where returns follow a Wiener
process with a constant mean and variance. If either the mean or the variance were to be
dynamic, this would makes the optimal wealth allocation dynamic as well.

While Markowitz’s and Merton’s approaches are theoretically appealing, three major prob-
lems occur when (naively) applying either model empirically. First, the future mean return
and variance is time-varying and predicting them is the subject of much research, which im-
plies a second problem. Namely, investors should change the allocation of wealth across time
given new predictions of the future mean and variance. Dynamically changing the portfolio
gives rise to a third problem; investors incur transaction costs to make portfolio changes, which
means a target portfolio can take many days or weeks to achieve, rendering the static result
unattainable.

[Gârleanu and Pedersen, 2013] mostly address the three issues from above, except the
constant covariance matrix, by solving the multi-period problem for an investor with mean-
variance preferences, facing quadratic transaction costs. They derive an analytical solution for
returns given by a factor type model and a constant covariance matrix. The authors find that
the optimal portfolio is a combination of the previous period’s portfolio and an aim portfolio
(or a target portfolio), depending on the level of transaction costs. It is analogous to how a
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missile homes onto its target by aiming for where it will be rather than where it currently
is. Empirically, the authors find their dynamic approach is superior, even after subtracting
transaction costs, emphasizing the importance of adjusting for transaction costs when deriving
an optimal trading strategy for institutional investors.

[Gârleanu and Pedersen, 2013]’s focus on factor models for the mean of returns leaves an
opportunity for us to focus on the conditional volatility and correlations of returns rather than
the conditional mean. Literature like [Welch and Goyal, 2008] and [Jobson and Korkie, 1980]
finds that forecasts of mean returns tent to be very noisy. [Jagannathan and Ma, 2003] writes:

"Tangency portfolios, whether constrained or not, do not perform as well as the
global minimum variance portfolios in terms of the out-of-sample Sharpe ratio.
This means that the estimates of the mean returns are so noisy that simply imposing
the portfolio weight constraint is not enough..."

Therefore, we consider a multi-period investment strategy similar to [Gârleanu and Pedersen,
2013] but focused on optimal minimum variance portfolios, which corresponds to investors
with mean-variance preferences and extreme risk aversion. We model returns with a constant
mean process and use a DCC MGARCH model for the conditional covariance matrix proposed
by [Engle, 2002]. Engle decomposes the covariance matrix Ωt into variance and correlation and
models these separately with N univariate GARCH type models for the conditional variances
and a single scalar BEKK model for the conditional correlation. This enables a two-stage
estimation of the DCCMGARCH model, which significantly reduces the number of parameters
to be estimated and allows us to model a larger number of assets.

The idea of using MGARCH models to model the conditional covariance matrix in min-
imum variance portfolios is not new as [Engle and Sheppard, 2001] consider a DCC MGARCH
model as the data generating process of the conditional covariance matrix and the time-varying
minimum variance weights resulting from using the conditional covariance matrix.

Thus, we want to find the optimal dynamic portfolio trading strategy for an investor
with a long horizon where the covariance matrix is modeled as a DCC MGARCH process.
A time-varying covariance matrix has been used in dynamic investing strategies before, like
[Collin-Dufresne et al., 2015], who consider efficient portfolios with returns given by factors
models. In their model, the residual covariance matrix, Σ, is constant, but the covariance
matrix of the returns, Σt→t+1, is time-varying by scaling it with time-varying factor exposures,
βi,t. The authors implement a time-varying covariance matrix into the result of [Gârleanu
and Pedersen, 2013] and evaluate each period’s Riccati equations. Although this adds extra
computational demands, it significantly improves the outcome in terms of average terminal
wealth and average utility across different levels of transaction costs.

Much literature estimates transaction costs for example [Robert et al., 2012], who find that
trading 1.59% of the daily volume of an asset costs an average of 10 basis points on NYSE
and NASDAQ. Additionally, the literature uses a wide range of transaction cost forms, from
unrealistic yet straightforward forms like the rarely used constant transaction costs to extens-
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ively used forms like proportional transaction costs. An example is [Constantinides, 1986], who
considers a two-asset case and shows that proportional transaction costs drastically decrease
trading volume. [Mei et al., 2016] considers a problem similar to [Gârleanu and Pedersen,
2013] but with proportional and quadratic transaction costs. The difference between the two
forms is that quadratic transaction costs exponentially punish portfolio changes compared to
proportional transaction costs. We consider an investor facing quadratic transaction costs,
which is generally more consistent with modeling large institutional investors.

To summarize, the research question of this thesis is "What is the optimal minimum vari-
ance dynamic strategy when investors face quadratic transaction costs with returns modeled by
a constant mean process and a DCC MGARCH model for the conditional covariance?".

This implies modeling a tiny subset of the efficient frontier with an infinitely risk-averse
investor. Our reasoning behind this decision is the high noisiness of mean return estimates,
[Jobson and Korkie, 1980] and [Jagannathan and Ma, 2003], and the inaccuracies of forecasts
using factor models, [Welch and Goyal, 2008]. In contrast, it is somewhat possible to forecast
conditional variances and correlations to find minimum variance portfolios.

The structure of this paper is as follows. Section 2 introduces Modern Portfolio Theory
along with efficient and minimum variance portfolios (MVP) and arguments for focusing on
the latter. Section 3 presents stylized facts of financial time series and how the GARCH type
model captures these facts. We present both univariate and multivariate GARCH models,
along with methods for forecasting the covariance matrix and how to use this forecast to find
the optimal MVP portfolio. In section 4, we go through the dynamic programming techniques
of [Bellman, 1966]. Then we use dynamic programming to solve the multi-period optimization
problem both for an investor who ignores transaction costs and one who adjusts for them.
Following a brief description of our sample data in section 5, we present the dynamics of
both strategies and perform backtesting of the two strategies in section 7 and 8 to test their
performance on historical data. This section also explores the differences between a static
Markowitz portfolio using the covariance matrix from an empirical estimate and the covariance
matrix from an MGARCH model to see if our strategy. Finally, we round off with a discussion
and conclusion in section 9 and 10, respectively.

2 Modern portfolio theory

Modern portfolio theory was introduced in the seminal paper [Markowitz, 1952]. We give an
overview of his approach, starting by characterizing the asset universe and the investor we
model in section 2.1. Then we introduce Markowitz’s mean-variance approach and review the
optimal allocation of N assets in section 2.2. Furthermore, we discuss the investor’s empirical
challenges when using the mean-variance method in practice in section 2.2.1.
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2.1 Characterization of the investor and the market

The market in this thesis is characterized by N risky assets with prices given as Pi,t. The risky
assets may be stocks, ETFs, or other financial assets. Additionally, investors pay no taxes.

We model an institutional investor with an initial portfolio value of $1 bn. Initially, the
investor ignores transaction costs, but we later model an investor that adjusts for transaction
costs. Transaction costs are brokerage fees, bid-ask spread costs, and price impact costs,
but the latter is the most important for institutional investors. We model the investor as
risk-averse, which is empirically in line with the vast majority of people being somewhat risk-
averse.1 Finally, the investor only cares about the return and variance of their portfolio. This
type of preference is called mean-variance utility or quadratic preferences, which the following
utility function can express:

Ut(vt−1, rt) = E[v′t−1rt|Ft−1]− γ

2
V[v′t−1rt|Ft−1] = Et−1[v′t−1rt]−

γ

2
Vt−1[v′t−1rt] (1)

Et−1[·] = E[·|Ft−1] denotes the conditional expectation with respect to the filtration, Ft−1, and
similar for Vt−1[·] denoting the conditional variance. γ is the investor’s level of risk aversion
and rt = (r1,t, r2,t, ..., rN,t)

′ is the return of the financial assets given as ri,t = Pi,t/Pi,t−1− 1. vt
is an N × 1 vector of weights vt = (v1,t, v2,t, ...vN,t)

′ defining a portfolio of assets. The weights
are normalized wrt. the total amount invested and are determined in the previous period.
The portfolio has mean return and variance

Et−1[v′t−1rt] = v′t−1Et−1[rt] and Vt−1[v′t−1rt] = v′t−1Vt−1[rt]vt−1

This utility function captures the trade-off between maximizing the expected returns of the
portfolio, Et−1[v′t−1rt], and minimizing the variance of the portfolio, Vt−1[v′t−1rt]. For γ = 0,
the investor is risk-neutral which means the only objective of the investor is to maximize the
expected returns regardless of the risk it may pose, which shows as γ

2
Vt−1[v′t−1rt] disappears

from the utility function.
Real-world investors also care about intermediate consumption rather than just interme-

diate returns and volatility. Many authors have worked on this problem, like [Merton, 1969]
who derived rules for intermediate consumption and wealth allocation. To limit scope of our
thesis, we only consider an investor who cares about intermediate returns and volatility.

2.2 Mean-variance approach

The mean-variance approach is built upon [Markowitz, 1952]’s seminal paper that lays the
foundation for the field of Modern Portfolio theory. Markowitz considers an investor with the
objective of obtaining maximum future returns at the lowest possible risk. This corresponds
to an investor with preferences as in equation (1). To apply this theory in practice, one must
estimate mean asset returns and (co)variances. The simplest method is to use past returns to
estimate mean returns and the sample averages for the (co)variances of returns.

1[Holt and Laury, 2002] observe that 81% of participants were risk-averse.
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After estimating mean asset returns and the covariance of returns, the investor forms
portfolios from N assets, and any set of mean and variance obtained by combining these N
assets is so-called feasible. All feasible combinations are called the feasible set. The number of
assets determines the size of the feasible set, which increases as the number of assets grows.
In figure 1, the feasible set is contained within the black lines. Notice that the feasible set
is much larger than any mean-variance combination obtainable from individual stocks. The

Figure 1: Estimated efficient frontier with minimum variance portfolio and efficient portfolio

Source: Yahoo Finance. Data from January 1st 2013 to September 1st 2021

investor can thus invest in any portfolio within the feasible set. However, a rational investor
will only invest in a portfolio along the efficient frontier, which is the set of portfolios that
either

• Has the highest expected return for a given variance

• Has the lowest variance for a given expected return

There are many efficient portfolios on the efficient frontier, which in figure 1 is all portfolios on
the black line. The investor picks a portfolio from the efficient frontier that maximizes their
utility with respect to their level of risk aversion, γ. The more risk-averse the investor is, the
more to the left in the figure the investor prefers to be. An infinitely risk-averse investor, who
only cares about minimizing risk, will prefer the minimum variance portfolio (the green dot)

page 8 of 85



Dynamic Trading with a GARCH volatility model

under our assumption of no outside option. In contrast, a moderately risk-averse investor will
prefer the efficient portfolio (the red dot), a trade-off between expected return and risk.

Markowitz’s mean-variance approach requires either Gaussian returns, NN(µ,Σ), or quad-
ratic preferences given by equation (1). We use the second assumption that the investor has
quadratic preferences even though we use Gaussian returns for the following derivations for
simplicity. We begin by considering a standard mean-variance approach for N risky assets to
see how this works in practice.

2.2.1 Solving the problem for multiple assets

Consider a market defined by N risky assets, the returns of which are given by a multivariate
Gaussian distribution NN(µ,Σ). µ is an N × 1 vector of mean returns, and Σ is the N × N
covariance matrix of the N assets. vt is a N × 1 vector of weights. An investor with mean-
variance preferences as given by equation (1) seeking to maximize their expected utility in
period t+ 1 solves the following static optimization problem:

max
vt

{
Et[Ut+1(vt, rt+1)]

}
= max

vt

{
Et[v′trt+1]− γ

2
Vt[v

′
trt+1]

}
=

max
vt

{
v′tµ−

γ

2
v′tΣvt

}
s.t. v′t1 = 1

The constraint v′t1 = 1 means that the investor must invest all available funds into the risky
assets of the market. The natural interpretation is that the investor has no outside option
besides the N assets. Because the individual weights of the weight matrix, vi, are not restricted
to be positive, vi ≥ 0, the investor can short sell assets.
To solve the problem, we set up the Lagrangian with constraint v′t1 = 1 with a Lagrangian
multiplier λ

L(vt) = v′tµ−
γ

2
v′tΣvt − λ(v′t1− 1)

Taking first-order conditions with respect to the weight, vt

∂L
∂vt

= µ− γΣvt − λ1 = 0

Solving for vt yields

λ1 = γΣvt ⇔ vt =
1

γ
Σ−1(µ− λ1)

The constraint requires that v′t1 = 1⇔ 1′vt = 1, which can be used to solve for the Lagrangian
multiplier λ

1 = 1′
(

1

γ
Σ−1(µ− λ1)

)
⇔ 1′Σ−11λ = 1′Σ−1µ− γ ⇔ λ =

1′Σ−1µ− γ
1′Σ−11

We insert the expression for λ into the weights, vt

vt = γ−1Σ−1

(
µ−

[
1′Σ−1µ− γ
1′Σ−11

]
1

)
=

Σ−11
1′Σ−11

+
1

γ

(
Σ−1µ− 1′Σ−1µ

1′Σ−11
Σ−11

)
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Resulting in

vEFF
t = vMVP

t +
1

γ

(
Σ−1µ− 1′Σ−1µ

1′Σ−11
Σ−11

)
︸ ︷︷ ︸

(i)

(2)

Thus, the efficient portfolio, vEFF
t , consists of the minimum variance portfolio vMVP

t and a
self-financing portfolio (i)2.

An investor seeking to maximize their utility invests all available funds into the minimum
variance portfolio, vMVP

t , and creates a self-financing portfolio, (i), that increases the expected
return of the investor’s portfolio but also increases the risk of the portfolio. In terms of figure
1, vEFF

t corresponds to some portfolio on the efficient frontier, with the red dot as an example
with γ = 100. As γ →∞ then (i)→ 0 and the investor only invests in the minimum variance
portfolio, the green dot.

Intuitively, it makes sense to care about the expected return of the portfolio, µ. However,
the investor does not know the true mean of returns, µ. It can be estimated by its empirical
counterpart, µ̂. However, neither the true mean, µ, nor the empirical mean, µ̂, can predict
the return of an asset tomorrow with any noticeable accuracy. Actually, [Jobson and Korkie,
1980] show that the sample mean from a wide range of stocks are unstable and biased or as
[Jagannathan and Ma, 2003] puts it:

"The estimation error in the sample mean is so large that nothing much is lost
in ignoring the mean altogether when no further information about the population
mean is available"

If the sample mean is used, the instabilities in µ̂ adds instabilities to the chosen weights,
vt. Therefore, some authors prefer to use a factor-like model that often includes factors
like momentum, market-to-book ratio, etc., attempting to predict future returns. Famously
[Fama and French, 1993], and [Carhart, 1997] presented their three and four-factor model
with statistically significant parameters for the factors. However, [Welch and Goyal, 2008]
showed that the estimates of many parameters of factor models are unstable and even prone
to spurious results.

Another argument against factor models is the efficient market hypothesis, stating that no
publicly available information today can predict returns tomorrow. Other market participants
also have that information and should have traded the benefits of the information away. Thus,
the explanatory power of the factors models should already be reflected in today’s prices, thus
giving the factor models no predictive power, theoretically.

In summary, no method exists to estimate future returns reliably. Even if the methods are
successful, the literature tells us we can only expect to gain marginally helpful information from
them. If we tried to estimate mean returns, the estimation uncertainty from these methods
introduces two significant problems for the optimal portfolio weight, vEFF

t .

2The portfolio is self financing as 1′
(

Σ−1µ− 1′Σ−1µ
1′Σ−11Σ−11

)
= 1′Σ−1µ̃− 1′Σ−1µ̃1′Σ−11(1′Σ−11)−1 = 0.
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Firstly, estimation uncertainty adds instability to the optimal weights. This leads to un-
necessary rebalancing, which adds transaction costs without benefits since any deviation from
the current portfolio is costly.

Secondly, not accounting for estimation uncertainty of the sample mean may cause ex-
treme portfolio weights when naively implementing sample-based mean-variance portfolios.
[DeMiguel et al., 2009] has a great example:

"Consider the following extreme two-asset example. Suppose that the true per
annum mean and volatility of returns for both assets are the same, 8% and 20%,
respectively, and that the correlation is 0.99. In this case, because the two assets are
identical, the optimal mean-variance weights for the two assets would be 50%. If,
on the other hand, the mean return on the first asset is not known and is estimated
to be 9% instead of 8%, then the mean-variance model would recommend a weight
of 635% in the first asset and -535% in the second. That is, the optimization tries
to exploit even the smallest difference in the two assets by taking extreme long and
short positions without taking into account that these differences in returns may be
the result of estimation error."

The tendency for extreme portfolio weights is problematic because [Jobson and Korkie, 1980]
and [Jagannathan and Ma, 2003] show that the sample average mean is unstable and biased.
Thus, the sample mean may be spurious, leading to erroneous portfolio allocations, which
in the real market will badly hurt investors’ returns. So to limit problems from estimation
uncertainty regarding the sample mean, we narrow the scope of the thesis and focus solely on
minimizing the volatility of the investor’s portfolio.

Specifically, rather than maximizing expected utility, we minimize the variance of the
portfolio.

min
vt

{
1

2
v′tΣvt

}
s.t. v′t1 = 1

To solve the problem, we set up the Lagrangian with an identical weight constraint like before
v′t1 = 1, with a Lagrangian multiplier λ

L(vt) =
1

2
v′tΣvt − λ(v′t1− 1)

Taking first-order conditions with respect to the weights, vt

∂L
∂vt

= Σvt − λ1 = 0

Solving for vt yields
λ1 = Σvt ⇔ vt = Σ−11λ

The constraint requires that v′t1 = 1′vt = 1, which can be used to solve for the Lagrangian
multiplier, λ

1 = 1′vt = 1′Σ−11λ⇔ λ =
1

1′Σ−11
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Now, we insert the expression into the weights, vt

vt = Σ−11λ = Σ−11
1

1′Σ−11
⇔

vt =
Σ−11
1′Σ−11

= vMVP
t (3)

The Minimum Variance Portfolio (MVP) is the portfolio that has the lowest variance of all
possible portfolios. To visualize this, consider figure 1, where the MVP (the green dot) has the
lowest annualized volatility of all portfolios along the efficient frontier. Comparing the MVP
portfolio to the efficient portfolio in figure 1, we see that the efficient portfolio (red dot) has a
much higher expected return than the MVP portfolio (green dot) but recall that the sample
mean is prone to estimation uncertainty.

We consider minimum variance portfolios not because we are entirely disinterested in the
returns of the portfolio but because of the estimation uncertainty associated with the sample
mean of returns. Additionally, [Jagannathan and Ma, 2003] have found that minimum variance
portfolios have the highest out-of-sample Sharpe ratio. Thus, we have good reasons to believe
that this more straightforward approach might be superior to an efficient portfolio in terms of
risk-adjusted returns.

A significant drawback to the theoretical derivations above is that the assumed Gaussian
returns do not mimic the empirical process of financial time series, which we elaborate on in
the next section.

3 GARCH processes

Modeling Gaussian returns is mathematically convenient, but the subsequent sections use a
Student’s t-distributed returns in a GARCH type volatility model. In section 3.3.3, we show
that changing the volatility process does not fundamentally change the results of the mean-
variance approach. The following section explains why we are interested in deviating from
conventional volatility modeling by exploring stylized facts about financial time-series and
how the GARCH type models capture these features.

3.1 Stylized facts about returns

Numerous empirical studies of financial time-series like [Cont, 2001], [Fama, 1965] and [Man-
delbrot, 1967] have revealed some stylized facts about returns. When modeling asset returns,
it is important that the model of choice mimics these stylized facts. However, there is a fine
line between a complete and rigorous model with high estimation uncertainty and a simple
but sufficient model with low estimation uncertainty. Consider the following three stylized
facts:

1. The distribution of asset returns is non-Gaussian
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The empirical distribution of returns has higher kurtosis and fatter tails than a Gaussian
distribution. Thus, financial returns are more likely to be centered around the mean and
more likely to experience extreme events of either sign than returns drawn from a Gaussian
distribution.

Distributions with a better fit to the empirical distribution of returns include the Gener-
alized Error Distribution (GED) or the Student’s t-distribution, both offering higher kurtosis
and fatter tails than the Gaussian distribution. Both are good choices but we use the Student’s
t-distribution as this is most familiar to us.3

2. There is almost no correlation between returns for different days

Consider the sample autocorrelation function between period t and t + τ for τ > 0 with a
sample length of T

ρ̂t,τ =
T−τ∑
t=1

(rt − E[rt])(rt+τ − E[rt])

/ T∑
t=1

(rt − E[rt])
2 (4)

which measures the autocorrelation, i.e., the average correlation between the values of a time
series at different points in time. For almost all financial time series, the empirical autocor-
relation, ρ̂t,τ , is insignificant and thus close to zero.4 Thus, an autoregressive (AR) model
for returns would likely be a poor fit for financial time series, and past returns give little to
no information about future returns. Therefore, we use a constant mean model for the mean
process as it is simple and with mainly care about modeling the conditional covariance.

3. There is a positive dependency between squared (or absolute) returns of nearby days

Stylized fact 2 states that there is no autocorrelation in financial time series. Thus, one
might be tempted to think that returns are identical and independently distributed or IID.
However, this is not correct as many transformations of returns feature strong dependency
across time. The most common of which is squared returns, the autocorrelation of which is
rarely insignificant.5 This also implies volatility clustering, which means that periods of high
or low volatility tend to be clustered together across time or, as [Mandelbrot, 1967] puts it:

"...large changes tend to be followed by large changes, of either sign, and small
changes tend to be followed by small changes."

This latter part implies that returns are not homoskedastic, i.e., they do not have a constant
variance across time.

To summarize, it would be inaccurate to model returns as IID or Gaussian. Thus, the next
part of the thesis presents a model in which returns are neither Gaussian nor independent of
each other across time. There are several possible approaches to achieve such a model. One
of the most widely used is the Autoregressive Conditional Heteroskedasticity (ARCH) model
with a non-Gaussian distribution, which is the first model we introduce.

3[Taylor, 2011],Asset price dynamics, volatility, and prediction,p. 70-76
4[Taylor, 2011],Asset price dynamics, volatility, and prediction,p. 76+77
5[Taylor, 2011],Asset price dynamics, volatility, and prediction,p. 82-86
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3.2 Univariate GARCH models

[Engle, 1982] developed the precursor to the GARCH model to model and forecast variances
more accurately, which should be very useful to an investor seeking to minimize the variance
of a portfolio. The resulting Autoregressive Conditional Heteroskedasticity model, or ARCH
for short, models the conditional variance as dependent on past shocks to the modeled time
series. Consider a simple model for the mean of a time series with a constant mean

rt = µ+ εt (5)

We introduce different GARCH models with different variance specifications, but they all
share the constant mean specification in equation (5). Consider the simplest possible model
given by an ARCH(1) where the conditional variance only depends on the last period’s shock,
εt−1.

εt = σtzt zt ∼ IID.D(0, 1) (6)

σ2
t = ω + αε2t−1 ω > 0, α ≥ 0 (7)

with initial values taken as given and t = 0, 1, ...T . Notice that the variance of this process is
heteroskedastic. The parameter restrictions on α and ω are needed to ensure strictly positive
variance for all t. D(0, 1) is some distribution with mean zero and unit variance. The distri-
bution is often a Gaussian distribution for ease of computation, but other distributions with
better fits to financial time series like a Generalized Error Distribution (GED) or a Student’s
t-distribution can be used. We utilize the latter, of which the probability density function is
in the Appendix A.1. We elaborate on this choice in section 5.

ω is a constant that ensures strictly positive variance. The parameter α is the effect of
past shocks on the conditional variance and can also be interpreted as short-run persistence
of the conditional variance.

The ARCH model has an empirical weakness. The conditional variances from the model
converge back to the minimum conditional variance after a large shock much quicker than
empirical estimates indicate it should - even for large lag lengths.

[Bollerslev, 1986] solved this problem with the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model, which adds persistence between the individual measures
of the conditional variance across time. It does so by adding βσ2

t−1 to the equation for the
conditional variance in equation (7), which results in the GARCH(1,1).

σ2
t = ω + αε2t−1 + βσ2

t−1 ω > 0, α, β ≥ 0 (8)

This reduces the speed with which the conditional variance decreases after a big shock as
the parameter β is how persistent the conditional variance is and can be interpreted as the
long-run persistence of volatility.

We illustrate the difference in convergence speed between the ARCH(1) and GARCH(1, 1)
in figure 2, where we plot the conditional variance over 40 periods. In period t = 25, we give
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Figure 2: Response of the conditional variance σ2
t to a shock

Note: In order to fairly compare the two models, parameters are chosen to give an identical uncon-
ditional variance for similar convergence.

the asset returns a large shock of 8%, which causes an increase in the conditional variance.
For the ARCH(1) in eq. (7), we see a spike in the conditional variance in period t = 26, and
an immediate return to the minimum conditional variance at t = 27 as the ARCH model has
no persistence between measures of conditional variance. For the GARCH(1,1) in eq. (8),
we see an identical spike in period t = 26, but in contrast to the ARCH(1), it exponentially
convergences back to the minimum conditional variance. The exponential convergence is
because the GARCH(1,1) has persistence between measures of conditional variance such that
the shock affects the conditional variance for a longer time.

We see that adding a lagged conditional variance term to the ARCH model, βσ2
t−1, causes

the conditional variance to converge more slowly back to the minimum conditional variance,
which is given as

σ2
MIN =

ω

1− β
(9)

and the unconditional variance, which, given weak stationarity, is given as

σ2 =
ω

1− α− β
, 6 (10)

This slower convergence is more in line with how the empirical variance behaves.
6[Taylor, 2011],Asset price dynamics, volatility, and prediction, p. 202
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While the standard GARCH model does an admirable job of explaining the conditional
variance of financial time series, econometricians have continuously worked to improve upon
the work done by Engle and Bollerslev. [Glosten et al., 1993] presented the GJR-GARCH(1,1)
model that allows for asymmetric effects of shocks where the conditional variance is given by

σ2
t = ω + αε2t−1 + βσ2

t−1 + κε2t−1I{εt−1<0} ω > 0, α, β, κ ≥ 0 (11)

such that the effect on the conditional variance is α+ κ if the shock is negative, which is well
documented to be accurate and named the "leveraged effect." For GARCH models in general,
the number of lags is denoted GARCH(p,q), where p is the number of lagged residuals, and q
is the number of lagged conditional variances terms.

These models can be estimated via maximum likelihood estimation (MLE). We define the
parameters of the model as a vector, θ = (µ, ω, α, β, κ, ν), to be estimated by the maximum
likelihood estimator (MLE), and the information set, Ft−1 = (rt, rt−1, ..., rT ). Note that ν
is the shape parameter for the Student’s t-distribution.7 The likelihood function is the joint
probability of the observed data given the parameters of the model. It is more convenient to
consider the log-likelihood function, which can be written as

L(θ) =
T∑
t=1

log lt(θ|Ft−1) = log
T∏
t=1

lt(θ|Ft−1),

where
lt(θ) = F (ri|θ) i = 0, 1, 2, ..., T,

where F is the conditional probability density function for rt given the parameters of the
model, θ8. Then the maximum likelihood function with a Student’s t density is given as

L(θ) =

Γ( v+1
2

)

Γ( ν
2

)√
(ν − 2)πσ2

t (θ)

(
1 +

−(rt − µ)2

(ν − 2)σ2
t (θ)

)
.

with σ2
t (θ) = ω + αε2t−1 + βσ2

t−1 + κε2t−1I{εt−1<0} and the gamma function Γ(·). We get the
parameter estimates that make the data we observe most likely when maximizing the maximum
likelihood function. The maximum of the maximum likelihood function cannot be found
analytically. Instead, a consistent estimate, θ̂, can be obtained via numerical optimization
given some initial guess of θ.

Under specific parameter conditions, the data of the GARCH type model can be shown to
be weakly stationary. For GJR-GARCH(1,1), the data is weakly stationary when α+β+0.5κ <

1 with the conditions from the ARCH(1) and GARCH(1,1) contained within as a special case
of the GJR-GARCH(1,1)9. Suppose the model’s data is weakly stationary given the stated
conditions. In that case, the law of large numbers applies, which implies that the maximum
likelihood estimator is consistent. The estimates, θ̂, then converge to the true value of the
parameters, θ0, i.e. θ̂ → θ0 in probability as T →∞.

7See appendix A.1 for details on the distribution
8[Bohn Nielsen, 2017]: Introduction to likelihood-based estimation and inference, Page 52-53
9[Taylor, 2011], Asset price dynamics, volatility, and prediction, p. 221
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3.3 Multivariate GARCH models

In the univariate case, we consider one asset and the variance of this single asset. But an
investor will almost always care about multiple assets and how their variances and covariances
develop over time. Luckily, a natural extension of the univariate GARCH model exists into
a multivariate GARCH model, MGARCH. Now, consider N assets with an N × 1 vector of
returns, rt, given by a similar constant mean model to the univariate case, but now of vectors

rt = µ+ εt (12)

with µ being a N × 1 vector of the empirical mean of the individual assets and εt being an
N × 1 vector of error terms.

In the univariate case, ensuring positive variance only required restricting a few parameters.
However, for MGARCH models, this is much more complicated. To ensure that the N × N
covariance matrix, Ωt, is indeed a covariance matrix, it must be positive definite for all t. The
challenge is thus to parameterize the model such that Ωt is positive definite for all t.

BEKK MGARCH
A mathematically simple MGARCH model that solves the parameterization problem is the
BEKK GARCH by [Engle and Kroner, 1995] where the conditional covariance matrix re-
sembles the univariate GARCH in form of a BEKK GARCH(1,1)

εt = Ω
1/2
t zt zt ∼ IID.D(0, Ip) (13)

Ωt(θ) = Ω + Aεt−1ε
′
t−1A

′ +BΩt−1B
′ (14)

with initial values taken as given and t = 1, 2, ..., T . Ω is positive definite, and A and B are
N ×N -dimensional matrices. θ is a vector of parameters, where {Ω, A,B} ∈ θ and D is some
multidimensional distribution. We have chosen to use a multivariate Student’s t-distribution
for similar reasons as in section 3.2. The probability density function of the multivariate
Student’s t-distribution is in appendix A.1. Unfortunately, it is next to impossible to get a
meaningful interpretation of the individual components of the matrix of parameters for A and
B. Still, the overall interpretation of A is entirely analogous to α in the univariate case and
the same for B to β.

A nice feature of the BEKK GARCH is that Ωt(θ) is positive definite for all t for any A
and B. Thus, the BEKK GARCH easily solves the parameterization problem.10

However, the BEKK MGARCH is empirically impractical as the number of parameters
explodes as N increases as the number of parameters is N(N + 1)/2 + 2N2. For N = 4, the
number of parameters is 42, and for N = 10, it is 255. Thus this model is only practical when

10[Engle and Kroner, 1995], Multivariate Simultaneous Generalized Arch, proposition 2.5
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analyzing a small group of assets like N < 10. One way around this problem is to simplify
the scalar BEKK(1,1) so A and B become scalars.

Ωt(θ) = Ω + αεt−1ε
′
t−1 + βΩt−1 α, β ≥ 0 (15)

This comes at a great loss to generality as all conditional (co)variances respond similarly to
shocks and have similar persistence, which is a debatable assumption. The data of BEKK(1,1)
is stationary and ergodic with E||X||2 <∞ when

%((A⊗ A) + (B ⊗B)) < 1 (16)

where ⊗ is the tensor product, and %(·) is the spectral radius. If the condition in equation
(16) holds, then A and B can be estimated consistently by maximum likelihood. For the
scalar-BEKK(1,1), the condition simplifies to a + b < 1.11 This model can be estimated via
maximum likelihood estimation where the maximum log-likelihood function has a multivariate
Student’s t density given as

LBEKK(θ) = log Γ

(
v + 1

2

)
− log Γ

(
ν

2

)
− N

2
log(ν − 2)

− N + ν

2
log

(
1 +

ε′tΩ
−1
t (θ)εt
ν − 2

)
− 1

2
log |Ωt(θ)|

where Ωt(θ) is given by equation (14) for the regular BEKK or (15) for the scalar BEKK and
Γ(·) being the gamma function.12 Similar to the univariate models, numerical optimization of
the likelihood function is the only way to find the maximum. If the condition in equation (16)
holds, the law of large numbers applies, and the maximum likelihood estimator is consistent.13

Similar to univariate GARCH models, multiple different Multivariate GARCH models ex-
ist, one of which is the Dynamical Conditional Correlation MGARCH or DCC MGARCH by
[Engle, 2002], which have another way around the parameterization problem.

DCC MGARCH
As the regular BEKK is impractical, we use a DCC MGARCH model with a scalar BEKK for
modeling conditional correlations. Consider the constant mean model given by equation (12),
but the conditional covariance is now given by a DCC MGARCH model. This model exploits
the fact that the N ×N covariance matrix, Ωt, in equation (13) can be decomposed into two
variances matrices, Vart and a correlation matrix, Γt,

Ωt = VartΓtVart (17)
11[Engle and Kroner, 1995], Multivariate Simultaneous Generalized Arch, proposition 2.7
12[Rossi and Spazzini, 2010], Model and distribution uncertainty in multivariate GARCH estimation: a

Monte Carlo analysis, p. 7
13[Engle and Kroner, 1995], Multivariate Simultaneous Generalized Arch, p. 138-139
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Where

Vart = diag
(√

σ2
i,t

)
=


σ1,t 0 · · · 0

0 σ2,t · · · 0
...

... . . . ...
0 0 · · · σp,t

 (18)

and each diagonal element is given by a univariate GARCH process. This GARCH process
can be any univariate GARCH process like a GJR-GARCH(1,1) or a GARCH(1,1) as below.

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1 for i = 1, 2, ..., N ωi > 0, αi, βi ≥ 0 (19)

These are weakly stationary given the conditions described in section 3.2. The correlation
matrix is given as

Γt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 =


1 ρ12,t · · · ρ1N,t

ρ21,t 1 · · · ρ2N,t

...
... . . . ...

ρN1,t ρN2,t · · · 1

 (20)

where Qt is the pseudo correlation which follows a scalar BEKK(1,1) MGARCH process given
by

Qt = Q̄(1− a− b) + aηt−1η
′
t−1 + bQt−1 a, b ≥ 0 Q̄ =

1

T

T∑
t=1

ηtη
′
t > 0 (21)

where ηt = Var−1
t εt is a N × 1 matrix of standardized (or devolatized) disturbances of the

correlations.
The ability to decompose the conditional covariance allows us to estimate this model in

two stages. First, we estimate the parameters in the N univariate GARCH models for the N
assets using the maximum likelihood estimation explained in section 3.2. Second, we estimate
a multivariate scalar BEKK for the conditional correlation using the maximum likelihood es-
timation for the BEKK above, which reduces the number of parameters to estimate. However,
by using a scalar BEKK(1,1) for the conditional correlations, we assume that the conditional
correlations have identical responsiveness to shocks and persistence. This assumption is not
as restrictive as one would think, because the conditional covariances still respond differently
to shocks when the conditional variances are modeled individually. This multivariate spe-
cification of the conditional correlation given by equation (20) and (21) will remain the same
throughout the thesis.

The DCC MGARCH model with univariate GARCH(1,1) for the conditional variances
and a multivariate scalar BEKK(1,1) for the conditional correlations has 3N + 3 parameters.
Compared to the BEKK(1,1) for N = 4, the DCC MGARCH(1,1) has 12 parameters and
33 for N = 10. So the number of parameters for DCC MGARCH(1,1) still grows fast, and
thus, to truly model a large number of assets, Eigenvalue MGARCH or λ-MGARCH models
are preferable. Still, since this thesis does not explore N � 10, we stick to the simpler DCC
MGARCH model.
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3.3.1 One-period forecast of the conditional covariance, Ωt+1

A very useful feature of GARCH type models is forecasting future (co)variance. Specifically,
Ωt+1 can be forecasted with Ft-measurable variables using equation (17)-(21).

Denote Xt+1|t as the forecast of a variable Xt+1 given Ft. The forecast of Ωt+1 is then Ωt+1|t

and similarly for the variance matrix Vart+1|t and the correlation matrix Γt+1|t. Recall from
(17) that the conditional covariance matrix, Ωt+1, can be decomposed into the conditional
variance and conditional correlation matrices such that the forecast, Ωt+1|t can be written as

Ωt+1|t = Vart+1|tΓt+1|tVart+1|t

Where:

Vart+1|t = diag


σ1,t+1|t

σ2,t+1|t
...

σN,t+1|t

 = diag



√
ω1 + α1Et[ε21,t] + β1σ2

1,t√
ω2 + α2Et[ε22,t] + β2σ2

2,t

...√
ωN + αNEt[ε2N,t] + βNσ2

N,t


and Et[ε2i,t] = ε2i,t as εt is known in period t. We can also decompose the forecast of the
conditional correlation as:

Γt+1|t = diag(Qt+1|t)
−1Qt+1|tdiag(Qt+1|t)

−1

With Qt+1|t being forecast as

Qt+1|t = Q̄(1− a− b) + aEt[ηtη′t] = Q̄(1− a− b) + aηtη
′
t + bQt

where Et[ηtη′t] = ηtηt as ηt is known in period t. Note that this is a forecast and thus subject
to errors which will become highly relevant during portfolio optimization.

3.3.2 Shrinkage of the covariance matrix

Using the estimated covariance matrix, Ωt+1|t, but mainly the sample covariance matrix, Σ,
introduces problems when used in portfolio optimization thoroughly explained in [Jobson and
Korkie, 1980] and [Jagannathan and Ma, 2003]. To summarize, any estimation error may
introduce extreme coefficients into the covariance matrix used in the mean-variance optimiza-
tion. The extreme coefficients lead to exaggerated portfolio weights when maximizing utility
for the investor. The portfolio weights are thus very unreliable given the estimation error
causing inefficiencies, a phenomenon which [Michaud, 1989] dubbed "error-maximization."

A straightforward approach to reduce this problem is to "shrink" the estimates of the
covariance towards the identity matrix I by some proportion δ as explained in [Ledoit and
Wolf, 2004]

Σ̂Shrunk = δI + (1− δ)Σ̂ (22)

where we apply a shrinkage of 50% corresponding to δ = 0.5 similar to [Gârleanu and Pedersen,
2013]. We don’t shrink the entire covariance matrix, but only Q̄ as this is the only part of the
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model estimated with a sample estimate corresponding to a pseudo sample correlation matrix
such that

Q̄Shrunk = δI + (1− δ)Q̄

Which when used in Ωt+1|t gives ΩShrunk
t+1|t . Throughout the theoretical section and section 4

on Dynamic programming, we use Ωt+1|t in the derivations to reduce awkward notation, but
when we apply the theory, we use the shrunken version, Ω̂Shrunk

t+1|t .

3.3.3 Multivariate GARCH models in Portfolio theory

Consider the investor’s problem for N assets presented in section 2.2.1. Now, rather than
the constant covariance matrix Σ, we use the time-varying covariance matrix, Ωt, that comes
from the constant mean DCC MGARCH(1,1) model from equation (12) and (17)-(21). The
investor minimizes the variance of their portfolio given that the weights of the portfolio sum
to 1.

min
vt

{
1

2
v′tEt[Ωt+1]vt

}
s.t. v′t1 = 1

As explained in section 3.3.1, the value of Ωt+1 can be forecast using Ft-measurable variables
such that Et[Ωt+1] = Ωt+1|t i.e., the conditional expectation of the covariance matrix in period
t+ 1 given period t is the forecast, Ωt+1|t. The Lagrangian is given as

L(vt) =
1

2
v′tEt[Ωt+1]vt − λ(v′t1− 1)

=
1

2
v′tΩt+1|tvt − λ(v′t1− 1)

Taking the first-order conditions wrt. vt and solving for vt and λ as in section 2.2.1 yields the
minimum variance portfolio after some light algebra. The proof is in appendix A.3

vt =
Ω−1
t+1|t1

1′Ω−1
t+1|t1

= vMVP
t (23)

The result is intuitive as Ωt+1|t simply replaces the constant Σ and, thus, it has the same
interpretation. It is likewise easy to replace Ωt+1|t with the shrunken version Ω̂Shrunk

t+1|t .

4 Dynamic Trading Strategies

We have explored replacing Σ with the covariance matrix of an MGARCH model, Ωt+1|t as
the covariance of financial assets is time-varying. However, to truly use the possible benefit
from the added complexity of MGARCH models, we need to consider a multi-period problem
where the dynamics of the MGARCH model can be used to obtain an optimal dynamic trading
strategy. We apply the dynamic programming framework introduced by [Bellman, 1966] to
solve multi-period problems. We use notation similar to [Gan and Lu, 2014] and [Gârleanu
and Pedersen, 2013].
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4.1 Dynamic programming techniques

Consider an agent that seeks a policy that defines the optimal action the agent should take
at time t in state s. The policy {v∗t }∞t=1 maximizes the present value of current rewards and
future expected rewards, f(vt, st), discounted by (1− ρ) ∈ (0, 1] given some general constraint
g(vt, st), that could be a budget constraint or a weight constraint.

max
{vt}∞t=0

E0

[
∞∑
t=0

(1− ρ)t+1f(vt, st)

]
s.t. g(vt, st) = 0 (24)

E0[·] is the conditional expectation given the filtration in period 0, i.e., E0[·] = E[·|F0]. Since
a maximization problem can be converted to a minimization problem,14 equation (24) is equi-
valent to

min
{vt}∞t=0

−E0

[
∞∑
t=0

(1− ρ)t+1f(vt, st)

]
s.t. g(vt, st) = 0 (25)

Consider an agent facing the minimization problem in (25). Dynamic programming decom-
poses this multi-period problem into a two-period problem, "now" and "later." The decom-
position is accomplished by rewriting the sum by taking out the first period t = 0.

L0 = min
{vt}∞t=0

−E0

[
∞∑
t=0

(1− ρ)t+1f(vt, st)

]
s.t. g(vt, st) = 0

= min
{vt}∞t=0

−E0

[
(1− ρ)

(
f(v0, s0) +

∞∑
t=1

(1− ρ)t+1f(vt, st)

)]
s.t. g(vt, st) = 0

= min
{vt}∞t=0

−E0

[
(1− ρ)

(
f(v0, s0) + E1

{ ∞∑
t=1

(1− ρ)t+1f(vt, st)

})]
s.t. g(vt, st) = 0

= min
v0
−E0

[
(1− ρ)

(
f(v0, s0)︸ ︷︷ ︸

(j)

+ min
{vt}∞t=1

E1

{ ∞∑
t=1

(1− ρ)t+1f(vt, st)

}
︸ ︷︷ ︸

(jj)

)]
s.t. g(vt, st) = 0︸ ︷︷ ︸

(jjj)

Here we have the immediate reward, (j), and future reward,(jj), under some constraint, (jjj),
which we transform to a Lagrangian type constraint with a time-varying Lagrangian multiplier,
λt.15

L0 = −min
vt

[
(1− ρ)f(v0, s0) + min

{vt}∞t=1

E0

{ ∞∑
t=1

(1− ρ)t+1f(vt, st)

}]
− λt[g(vt, st)]

This final part can be written as the value function, V (s0). We note that (jj) can be written
as its own dynamic problem just one period into the future as V (s1) such that

V (s0) = −min
v0

[
(1− ρ)f(v0, s0) + E0[V (s1)]

]
− λt[g(vt, st)]

14maxx{f(x)} = minx{−f(x)}
15See [Gan and Lu, 2014], General Setting and solution of Bellman equation in monetary theory, page 2
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Generalizing the value function to period t, we have

V (st) = −min
vt

[
(1− ρ)f(vt, st)︸ ︷︷ ︸

(j)

+Et[V (st+1)]︸ ︷︷ ︸
(jj)

]
− λt[g(vt, st)]︸ ︷︷ ︸

(jjj)

The optimal policies for the agent are the solutions to the optimization problem contained
within the value function, V (st), for each period t. In our case, the policies are optimal
portfolio weights.

4.2 Optimal dynamic strategies for multiple risky assets

Equipped with methods from dynamic programming, we proceed to derive optimal dynamic
trading strategies. First, for an investor that ignores transaction costs, and lastly, for an
investor that adjusts for transaction costs.

4.2.1 Derivation of the simple strategy (ignoring transaction costs)

ConsiderN assets withN×1 vector of returns, rt = (r1,t, r2,t, ..., rN,t)
′ given by a constant mean

DCC MGARCH(1,1) model given by equation (12) and (17)-(21). The investor has mean-
variance preferences given by equation (1) and seeks a dynamic trading strategy, {vt}∞t=0, that
solves the following multi-period minimization problem

max
{vt}∞t=0

E0

[
∞∑
t=0

(1− ρ)t+1

(
− 1

2
v′tΩt+1vt

)]
s.t. v′t1 = 1 (26)

with f(xt, st) = −1
2
vtΩ

′
t+1 and g(xt, st) = 0⇒ v′t1− 1 = 0⇔ v′t1 = 1. Multiplying (−1) into

the minimization problem yields the investor’s objective function

min
{vt}∞t=0

E0

[
∞∑
t=0

(1− ρ)t+1

(
1

2
v′tΩt+1vt

)]
s.t. v′t1 = 1 (27)

The problem can be solved via dynamic programming using the method in section 4.1. Denote
the minimization problem in (27) as denoted LGARCH

t

LGARCH
t = min

{vt}∞t=0

E0

[
∞∑
t=0

(1− ρ)t+1

(
1

2
v′tΩt+1vt

)]
s.t. v′t1 = 1

Following the same argument as in section 4.1 we get

= min
v0

E0

[
(1− ρ)1

[
1

2
v′0Ωt+1v0

]
+ min
{vt}∞t=1

E1

{ ∞∑
t=1

(1− ρ)t
(

1

2
v′tΩt+1vt

)]}]
− λt(v′t1− 1)

= min
v0

[
(1− ρ)

1

2
v′0Ωt+1v0 + (1− ρ) min

{vt}∞t=1

E0

{ ∞∑
t=1

(1− ρ)t
(

1

2
v′tΩt+1vt

)}]
− λt(v′t1− 1)
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Generalizing to period t− 1, we get that the value function, V (vt−1) is given by

V (vt−1) = min
vt

[
(1− ρ)

(
1

2
v′tEt[Ωt+1]vt︸ ︷︷ ︸

(i)

+Et[V (vt)]︸ ︷︷ ︸
(ii)

)]
− λ(v′t1− 1)︸ ︷︷ ︸

(iii)

The investor needs a measure of the next period’s covariance, Ωt+1, a random variable at
period t. But given the MGARCH structure of the covariance. Et[Ωt+1] can be given as the
forecast value Ωt+1|t (See section 3.3.1).

V (vt−1) = min
vt

[
(1− ρ)

(
1

2
v′tΩt+1|tvt︸ ︷︷ ︸

(i)

+Et[V (vt)]︸ ︷︷ ︸
(ii)

)]
− λ(v′t1− 1)︸ ︷︷ ︸

(iii)

(28)

The value function measures the value of the portfolio, in terms of utility for the investor,
at time t with the weight vt−1 of the risky assets. Additionally, the value function measures
utility for the current period (i) and future periods (ii) under the constraint that the weights
sum to 1, (iii).

Solving for the optimal weights requires solving the first-order conditions wrt. to the
weights vt. But first, we look into the conditional expectation of the value function in period
t:

Et[V (vt)] = Et

(
min
vt+1

[
(1− ρ)

(
1

2
v′t+1Ωt+2vt+1 + Et+1[V (vt+1)]

)]
− λ(v′t+11− 1)

)
Notice that none of the terms in Et[V (vt)] contain vt. This turns the dynamic minimization
problem into a series of one-period static problems. We can therefore proceed by solving the
problem for one general period t, and reuse this result every period:

∂V (vt−1)

∂vt
= (1− ρ)vtΩt+1|t − λt1 = 0⇔ vt = (1− ρ)−1Ω−1

t+1|tλt1

The constraint requires that v′t1 = 1, which we can use to solve for the Lagrangian multiplier
λ

1 = v′t1 = 1′vt = 1′(1− ρ)−1Ω−1
t+1λt1 = (1− ρ)−11′Ω−1

t+1|t1λt ⇔ λt =
1

(1− ρ)−11′Ω−1
t+1|t1

We insert the expression into the weights vt

vt = (1− ρ)−1Ω−1
t+1|t

[
1

(1− ρ)−11′Ω−1
t+1|t1

]
1 =

Ω−1
t+1|t1

1′Ω−1
t+1|t1

≡ vMVP
t

Because Ωt+1|t is positive definite, 1′Ω−1
t+1|t1 > 0. Given that the covariance, Ωt+1|t is time-

varying, the weights, vt, are likewise time-varying. The interpretation is that the investor
forecasts the covariance of the asset returns in the feasible set every period using the inform-
ation at time t. The investor can with some accuracy forecast the covariance within the near
future or, at the very least, the investor believes he can forecast the covariance one period into
the future.
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This result is not surprising as, in the absence of trading costs, the investor can rebalance
the portfolio each period to the new minimum variance portfolio at no charge. This is in line
with [Gârleanu and Pedersen, 2013] and [Mei and Nogales, 2018]. They both find that the aim
portfolio, i.e., the desired portfolio in the absence of transaction costs, is the Markowitz port-
folio which corresponds to the minimum variance portfolio when the objective is to minimize
volatility.

4.2.2 Derivation of the sophisticated strategy (adjusting for transaction costs)

Consider againN assets with returns, rt, given by a constant mean DCCMGARCH(1,1) model
from equation (12) and (17)-(21). An investor incurring transaction costs seeking to minimize
portfolio risk faces the following problem when seeking a dynamic investment strategy:

min
{vt}∞t=0

E0

[
∞∑
t=0

(1− ρ)t+1

(
1

2
v′tΩt+1vt

)
+

(1− ρ)t

2

(
1

2
(vt − vt−1)′Λt(vt − vt−1)

)]
s.t. v′t1 = 1

(29)
with transaction costs taking the form 1

2
(vt − vt−1)′Λt(vt − vt−1). The second term containing

the transaction cost penalization is discounted in period t and not t+1 since the investor incurs
transaction costs immediately. The investor now has to trade-off rebalancing their portfolio
given new information with the cost of trading. We assume that the transaction costs, Λt, are
given as

Λt = Ωt+1|tγD (30)

meaning that transaction costs are time-varying as Ωt+1|t is time-varying and γD is the risk-
aversion parameter. This specification might seem odd at first glance, but similarly to [Gâr-
leanu and Pedersen, 2013], one can think of it as a dealer taking the opposite side of the trade
∆vt that our investor makes. The dealer holds this position and then sells it back to the
market. During this period, the dealer’s risk is equivalent to ∆v′tΩt+1|t∆vt. The transaction
costs can thus be interpreted as compensation for the dealer’s risk, the level of which depends
on their risk-aversion, γD.

We solve this problem by using the method in section 4.1. Denote the minimization
problem in (29) as LTC

t

LTC
t = min

{vt}∞t=0

E0

[
∞∑
t=0

(1− ρ)t+1

(
1

2
v′tΩt+1vt

)
+

(1− ρ)t

2
(vt − vt−1)′Λt(vt − vt−1)

]
− λt(v′t1− 1)
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Following the same argument as in section 4.1 we get

= min
v0

E0

[
(1− ρ)1

(
1

2
v′0Ωt+1v0

)
+

(1− ρ)0

2
(v0 − v−1)′Λ(v0 − v−1)

+ min
{vt}∞t=1

E1

{ ∞∑
t=1

(1− ρ)t+1

(
1

2
v′tΩt+1vt

)
+

(1− ρ)t

2
(vt − vt−1)′Λt(vt − vt−1)

}]
− λt(v′t1− 1)

= min
v0

[
1

2
(v0 − v−1)′Λt(v0 − v−1) + (1− ρ)

(
1

2
v′0Ω1v0

)

+ min
{vt}∞t=1

E0

{ ∞∑
t=1

(1− ρ)t+1

(
1

2
v′tΩt+1vt

)
+

(1− ρ)t

2
(vt − vt−1)′Λt(vt − vt−1)

}]
− λt(v′t1− 1)

Where v−1 is the weight of the investor’s initial portfolio which sums to 1. Generalizing to
period t, we get that the value function, V (vt−1) is given by

V (vt−1) = min
vt

[
1

2
(vt− vt−1)′Λt(vt− vt−1) + (1− ρ)

(
1

2
v′tEt

[
Ωt+1]vt +Et[V (vt)]

)]
−λt(v′t1− 1)

(31)
Similar to section 4.2.1, the investor needs a measure of the next period’s covariance, Ωt+1,
a random variable at period t. Et[Ωt+1] can be given as the forecast value Ωt+1|t (See section
3.3.1) with an analogous interpretation as in section 4.2.1.

In contrast to the problems without transaction costs in section 4.2.1, Et[V (vt)] also be-
comes relevant as transaction costs add persistence between periods, i.e., vt now also affects
the value function of the next period. Thus, an expression for the next period’s V (vt) is
needed. Following the method of [Gârleanu and Pedersen, 2013], we apply the ’guess and
verify’ method, which can be divided into 6 steps:

1. Make an ansatz of the form of the value function

2. Set up the Bellman equation of the guessed value function

3. Find the first-order conditions and solve for the optimal policy (the weights)

4. Insert the optimal policy (the weights) into the value function

5. Compare the new value function with the ansatz and verify it solves the problem

6. Solve for coefficients

Our ansatz for V (vt) is

V (vt) =
1

2
v′tAvvvt − v′tAv11−

1

2
1′A111

Very tedious algebra can show that this is indeed a solution. The proof is in appendix A.4
along with expressions for Avv, Av1, and A11. We solve for the optimal weights by taking the
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partial derivative with respect to vt−1 as the optimal solutions for vt are already embedded
within the guessed value function and its parameters, Avv, Av1, and A11. Thus, the investor
essentially finds the optimal weights in period t−1 given what the investor believes about the
optimal weights in period t. Differentiating the Bellman equation (31) with respect to vt−1

yields:

Avvvt−1 − Av11 = Λt(vt − vt−1)

Λtvt = Λtvt−1 + Avvvt−1 − Av11

vt = vt−1 + Λ−1
t Avv

[
vt−1 − A−1

vv Av11
]

Define A−1
vv Av11 as the aim portfolio, aimt and insert Λt = γDΩt+1|t

vt = vt−1 + (γDΩt+1|t)
−1Avv

[
vt−1 − aimt

]
(32)

This result has an intuitive interpretation similar to [Gârleanu and Pedersen, 2013]. The
investor starts with the previous period’s weights, vt−1 and then estimates the aim portfolio,
aimt, the investor’s preferred portfolio given no transaction costs. Then given how costly it is
to trade in the period, γDΩt+1|t, the investor changes their portfolio to a combination of vt−1

and aimt resulting in vt.
Finally, we check if the weights vt sum to 1 using v′t1 = 1

1′
(
vt−1 + Λ−1

t Avv
[
vt−1 − A−1

vv Av11
]) ?

= 1

1′vt−1 + 1′Λ−1
t Avvvt−1 − 1′Λ−1

t Av11 6= 1

They clearly don’t sum to 1, which is undoubtedly a problem.16 To be able to move on, we
enforce that the aim portfolio and the next period’s portfolio weights sum to 1, so equation
32 becomes:

vt =
vt−1 + (γDΩt+1|t)

−1Avv
[
vt−1 − aimt

1′aimt

]
1′(vt−1 + (γDΩt+1|t)−1Avv

[
vt−1 − aimt

1′aimt

]
)

(33)

The additional restriction to the aim portfolio might seem odd, but we later show empirically
that the normalized aim portfolio is very similar to the simple strategy. This result intuitively
makes sense, leading us to speculate that a mathematically correct solution should be possible.
However, this is a topic for further research as the time constraints of this project force us
to move on. Notice that the normalized portfolio requires 1′(vt−1 + (γDΩt+1|t)

−1Avv
[
vt−1 −

aimt

1′aimt

]
) 6= 0 and 1′aimt 6= 0 which is not necessarily fulfilled. However, this has not led to any

problems in our implementation of the theory.
Below in figure 3, we summarize how the investor gains new information and updates their

portfolio. Here, ε is a small time-step just before market close.
16This means we must have made a mathematical error in A.4 or used an incomplete approach to begin with,

for example, with too few constraints. However, we have made substantial progress in unifying MGARCH
models with dynamic trading strategies
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Figure 3: The trading cycle of the investor

To summarize, we have derived two optimal minimum variance dynamic strategies when
the investor faces quadratic transaction costs with returns modeled by a constant mean process
and a DCC MGARCH model for the conditional covariance. Before proceeding to case studies
using historical backtesting, we briefly describe the data we use.

5 Overview of assets used in backtesting

We have chosen multiple different assets to test the dynamic strategies. Our source is Yahoo
Finance, where the data is freely available. We are primarily interested in stock ETFs, but we
also try the strategy on gold and crude oil and two bond ETFs. The mix of assets covers a
broad range of the financial markets without the need for thousands of individual assets. We
purposefully chose diversified assets to minimize the risk of spurious empirical results because
of the development in a specific sector or region. We use data from January 1st 2008 to October
1st 2021. The indexed time series of these assets are displayed in figure 4. Here, we see that
traditionally safer assets like gold and bonds steadily increase and generally fair well around
crises like 20+ year treasuries did around 2008 and 2020. In contrast, stocks typically suffer
substantial drops in value around the same market crashes, but in turn, achieve higher average
returns. This pattern is not surprising as finance theory predicts that exposing yourself to
higher risks, in general, is rewarded with higher returns. This pattern becomes even more
apparent when looking at table 2, where the stock ETFs generally have the highest annualized
returns at the cost of the highest risk. In contrast, bonds typically have lower returns at much
lower risk. From table 1, we note that the commodities are primarily uncorrelated with the
remaining assets.

Specifically, gold (GC=F) is very close to being uncorrelated with any of the assets except

page 28 of 85



Dynamic Trading with a GARCH volatility model

Figure 4: Indexed prices of our asset sample

Brent crude oil (BZ=F), which itself has a low positive correlation to most assets. In sharp
contrast, all the stock ETFs, EEM to EXI, are highly positively correlated with a correlation
coefficient above 0.7 in all cases. Finally, the 20 year+ treasuries (TLT) negatively correlate
with all assets except Brent crude oil (BZ=F). The correlations are essential in forming the
minimum variance portfolio because they create diversification and hedging opportunities,
which increase as assets get more negatively correlated. As mentioned in the theoretical

Table 1: Correlation matrix of selected asset returns

section, returns of financial time-series are not Gaussian, a point thoroughly proven by the
p-values of the Jarque-Bera test of normality being 0% for every asset in our sample, thus,
rejecting the null of normality. In figure 5 (a)-(c), the fitted Gaussian densities are also far
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from the shape of the histogram of the actual data. The Generalized Error Distribution (GED)
or a non-central Student’s t-distribution is a far better fit. The latter takes the slight edge
as the GED often has excess kurtosis. We provide the parameters for the fitted non-central
Student’s t-distribution for each asset in table 2.17

Table 2: Descriptive statistics, tests, and distribution fit

Mean Std. Dev Normality DF Non central
Annualized NC Student’s t parameters

Emerging Markets (EEM) 6.394% 29.919% 0.0 % 2.793 -0.199
S&P 500 (IVV) 11.921% 20.353% 0.0 % 2.154 -0.156
Europe (IEV) 5.333% 24.651% 0.0 % 2.473 -0.188
Global Tech (IXN) 15.511% 22.825% 0.0 % 2.612 -0.195
Real estate (IYR) 12.097% 31.307% 0.0 % 1.815 -0.127
Global financials (IXG) 6.659% 28.924% 0.0 % 2.105 -0.165
Global Industrials (EXI) 8.997% 22.549% 0.0 % 2.498 -0.178
Gold (GC=F) 6.880% 18.071% 0.0 % 3.067 -0.092
Brent crude oil (BZ=F) 5.992% 38.229% 0.0 % 2.484 -0.081
High-yield bonds (HYG) 5.998% 11.827% 0.0 % 1.732 -0.064
20+ year treasuries (TLT) 7.140% 15.017% 0.0 % 5.705 -0.146

Source: Yahoo Finance, Note: Data from January 1st 2008 to October 1st 2021

For backtesting purposes, the distribution is of minor importance because the parameters
for the MGARCH model can be consistently estimated via quasi maximum likelihood using
the Gaussian distribution or using maximum likelihood using the Student’s t-distribution as
explained in section 3.3.

Lastly, we consider the dependency structure provided by a GARCH type model. Recall
from the section 3.1 on stylized facts that daily returns are dependent across time; thus,
drawing returns IID would be inaccurate. From figure 5 (d)-(f), we see that one can fit GJR-
GARCH(1,1) models to the time-series for gold, S&P500, and high-yield bonds such that the
dependency structure of the simulated data mimics the historical time series data.

The ARCH(1) and GARCH(1,1) models can also fit the time series of many different asset
classes in the same way, so we only display the GJR-GARCH(1,1) for the sake of brevity.
Notice how the shocks of the simulated returns are of a similar size and how the shocks of the
returns are clustered together, similar to the historical data. Keep in mind the location of the
shocks for the simulated data is random as the data is simulated.

17See appendix A.2 for the exact density function for the non-central Student’s t-distribution
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Figure 5: Asset return densities and time series plots

(a) Gold densities (b) HYG bond densities

(c) S&P500 densities (d) Gold GJR-GARCH(1,1) time-series

(e) HYG bond GJR-GARCH(1,1) time-series (f) S&P500 GJR-GARCH(1,1) time-series

Note: The model for the simulated data is fitted on the historical data in the plots
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Combining the non-central Student’s t-distribution with a GARCH type process captures
the stylized facts about returns. The returns simulated from the process will be non-Gaussian
because they follow the above-mentioned distribution. They will also be uncorrelated as the
conditional mean has no correlation structure. Furthermore, they will be time dependent as
the conditional variance is correlated across time, again in line with the stylized facts from
section 3.1. All of this is to say that our chosen (G)ARCH models are flexible enough to
match all statistical properties of the time series in our data sample. In the next section, we
test whether this promising result can lead to superior portfolio risk management on historical
data.

6 Calibration, model fit, and the Buy-and-hold strategy

In this section, we apply our theoretical results to real-world data to assess the performance
and characteristics of the theoretically derived dynamic minimum variance portfolios. We
compare our strategies with two benchmark strategies: an Equal-weight strategy holding 1/N

in each asset with daily rebalancing and a Buy-and-hold strategy with the same initial portfolio
as the simple and sophisticated strategies but with no rebalancing. This initial portfolio is
the minimum variance portfolio given by the sample covariance using in-sample data with the
correlations shrunk 50%, elaborated upon in section 6.1. We consider the cases for which we
have theoretical results

• An investor ignoring transaction costs, ’the simple strategy’

• An investor adjusting for transaction costs, ’the sophisticated strategy’

By ’ignoring transaction costs,’ we mean whether the investor’s objective function penalizes
transaction costs or not, corresponding to minimizing either equation (29) or (26).

We test the simple and sophisticated strategies for three univariate GARCH specifications.
’Simple’ or ’sophisticated’ refers to the type of dynamic investment strategy used, whereas
ARCH(1), GARCH(1,1), or GJR-GARCH(1,1) refers to the kind of variance model used to
forecast conditional variance in the DCC MGARCH model. A combination of a dynamic
strategy and a univariate variance model yields a single investment strategy with a total of
six strategies.

For example, the simple ARCH(1) strategy is a dynamic minimum variance portfolio where
the investor ignores transaction costs. The investor uses a forecast of the conditional covari-
ance matrix, Ωt+1|t given by a DCC MGARCH model where the univariate variance models
are ARCH(1) models. Similarly, for the sophisticated GARCH(1,1), which is a dynamic min-
imum variance portfolio where the investor adjusts for transaction costs. The investor uses a
forecast of the conditional covariance matrix, Ωt+1|t given by a DCC MGARCH model where
the univariate variance models are GARCH(1,1) models. Notice that the structure of the
multivariate model is the same, but the structure of the univariate models changes.
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We choose the Equal-weight strategy as one of our two benchmark strategies as it is a
simple strategy that often has solid out-of-sample performance, as shown by [DeMiguel et al.,
2009]. The daily rebalancing implies that the Equal-weight strategy sells wining assets and
buys losing assets, a kind of anti-momentum strategy. We also benchmark against a Buy-and-
hold strategy. This strategy starts with the same portfolio as the simple and sophisticated
strategies but never rebalance. Therefore, it can show whether the simple and sophisticated
strategies add value by rebalancing and incorporating new information.

First, we test whether a GARCH estimate of the conditional variance can improve portfolio
performance compared to a myopic approach with a static sample covariance estimate. Second,
we fit the DCC MGARCH models and calibrate the transaction costs parameter, γD.

6.1 Motivating the Buy-and-hold strategy as a benchmark

This section tests if a GARCH model can make a difference in volatility forecasting compared
to a myopic approach. Specifically, we compare the conditional covariance forecast from a
GARCH(1,1) model to the sample covariance estimate from our out-of-sample dataset. First,
an overview of a typical GARCH conditional variance estimate of the S&P 500 compared to
the myopic estimate seen in figure 6 panel (a). We only show S&P 500 for the sake of brevity,
but the conditional volatility estimates for the other assets are similar in nature.

Figure 6: Comparison of sample covariance estimate vs. GARCH conditional estimate

(a) Volatility estimates σt... (b) ...resulting in portfolio weights, vMVP
t

Note: In panel(b), the dotted lines are the MVP weights given a sample covariance estimate, and the
solid lines are the weights given by the MGARCH covariance estimate.

In panel (a), we observe that both estimates forecast roughly the same average volatility
levels. However, the GARCH estimate is dynamic and sensitive to shocks compared to the
static estimate. The dynamic nature of the GARCH estimate will later prove to lead to costly
rebalancing for the GARCH model strategies. In panel (b), we backtest the two volatility
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estimation methods using four assets18 using the strategy from equation (28) with a 50%
regularization applied to the correlations.

Table 3: Annualized performance in gross return

Strategy Std. deviation Return Sharpe ratio

GARCH(1,1) 0.0661 0.0537 0.8125
Sample estimate 0.0775 0.0823 1.0615

Unsurprisingly, the fixed covariance estimates result in a portfolio with constant weights
(the dashed lines), which we dub the Buy-and-hold strategy. The simple and sophisticated
strategies we test in the subsequent sections also have these weights as their initial portfolio. In
the following sections, we will use the Buy-and-hold benchmark strategy along with an Equal-
weight strategy that holds 1/N in each asset for comparison with our dynamic strategies.

Even though this is just one case, we see that at least for these assets and the GARCH(1,1)
model, there seem to be significant potential improvements from using a GARCH conditional
covariance estimate compared to the Buy-and-hold approach. However, the Buy-and-hold
approach results in a strategy with no transaction costs, which could offset the worse per-
formance in gross returns. We will explore this trade-off for more assets and other volatility
models in section 7 and 8.

6.2 Calibration and model fit

Before we apply our theoretical results, we calibrate the transaction cost parameter, γD, from
equation (30), interpreted as the dealer’s risk preference. We define a portfolio, ψ, as a time-
series of weights, vt. The daily return rψ,t of the portfolio is the product of the lagged weights
and the asset returns: rψ,t = v′t−1rt. We lag the weights since the investor rebalances the
portfolio at the end of each trading day. The standard deviation of the portfolio returns σ̂ψ is
measured as the sample standard deviation:

σ̂ψ ≡

√√√√ 1

T − 1

T∑
t=1

(rψ,t − µ̂ψ)2 (34)

which is an essential measure when evaluating minimum variance portfolios. With inspiration
from [Hautsch and Voigt, 2019], we measure the daily turnover of the portfolio in percentage
points as:

TOψ,t = vt −
vt−1 ◦ (1 + rt)

1 + v′t−1rt
(35)

This specification includes intraday returns of the weights before rebalancing instead of as-
suming flat intraday returns. Notice that this is only measurable from period t = 2.

18S&P 500, 20+ Year Treasury Bonds, Brent Crude Oil Futures, and Gold Futures
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We calibrate γD like [Gârleanu and Pedersen, 2013], even though our returns are measured
in relative terms and not in dollar terms. We can convert the dollar-cost back into relative
costs with ∆xt = TOt◦ P̄ψv, where ∆xt is a N×1 matrix of the number of shares traded, ψv is
the total portfolio of initially $1bn and P̄ is a N × 1 vector of average asset prices. We do this
to use the result of [Robert et al., 2012] who find costs of 10 basis points (bp) of the average
price per asset when trading 1.59% of the daily volume. Combining the turnover equation
(35) with quadratic transaction costs, we obtain the daily transaction costs in dollar terms:

TCψ,t = ∆x′tΛt∆xt (36)

Now, we calibrate γD from our specification of transaction costs where Λt = Ωt+1|tγD. In the
following, we make a simplifying assumption and use the average daily volume of shares traded
in the market V̄i for asset i = 1, 2, ...N .
We know from [Robert et al., 2012] that

∆xi
V̄i

= 1.59%⇔ ∆xi = V̄i · 1.59%

and
TCi = 10bp · P̄i

Combining these results yields:

10bp · P̄i = V̄i · 1.59% · Λi = V̄i · 1.59% · σ2
i γD

γD = 10bp · P̄i(1.59% · σ2
i V̄i)−1

We estimate σi using the sample standard deviation of asset returns for the in-sample period.
As an example, we calibrate γD for IVV (S&P 500) where we estimate the following empirical
values:

σIVV = 1.7389 V̄IVV = 4, 190, 495 P̄IVV = 136.82

This yields γD for IVV:

γD = 1.73892(136.82 · 4190495 · 0.0159)−1 · 0.001 · 1e9 = 1.41e−5

Repeating this for all assets, we get a mean γD of 3.37e−5 and a median of 1.52e−6. To get
the relative loss from transaction costs in our backtesting, we divide the dollar transaction
costs we have just formulated with the total portfolio value. Algorithm 3 in the appendix
explains the procedure in detail.

Moving on to the fit of the MGARCH model, where we estimate the parameters via
maximum likelihood. As mentioned in section 3.3, a DCC MGARCH model comprises N
univariate GARCH type models, one for each asset, and a single multivariate model for the
conditional correlation.

In table 4, we present the estimates of the N = 11 univariate GARCH(1,1) models. The
estimates all lie within the expected range with β around 0.8-0.9, α around 0.1, and α+β < 1
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Table 4: Estimates of a DCC MGARCH(1,1) with univariate GARCH(1,1) - tν errorterms

Univariate GARCH

Asset µ ω α β ν

Emerging Markets (EEM) 0.062
(0.019)

0.038
(0.01)

0.102
(0.014)

0.883
(0.015)

9.458
(1.262)

S&P 500 (IVV) 0.100
(0.011)

0.020
(0.004)

0.169
(0.018)

0.830
(0.016)

5.286
(0.452)

Europe (IEV) 0.068
(0.015)

0.021
(0.006)

0.121
(0.017)

0.876
(0.016)

5.697
(0.511)

Global Tech (IXN) 0.127
(0.015)

0.029
(0.007)

0.122
(0.013)

0.868
(0.013)

5.900
(0.555)

Real estate (IYR) 0.086
(0.014)

0.016
(0.004)

0.119
(0.017)

0.875
(0.016)

7.812
(0.904)

Global financials (IXG) 0.081
(0.015)

0.026
(0.007)

0.125
(0.017)

0.869
(0.016)

5.996
(0.555)

Global Industrials (EXI) 0.083
(0.013)

0.018
(0.005)

0.122
(0.016)

0.873
(0.016)

6.508
(0.656)

Gold (GC=F) 0.040
(0.014)

0.005
(0.001)

0.033
(0.002)

0.963
(0.010)

4.206
(0.306)

Brent crude oil (BZ=F) 0.057
(0.025)

0.041
(0.015)

0.082
(0.012)

0.915
(0.012)

4.599
(0.389)

High-yield bonds (HYG) 0.036
(0.004)

0.003
(0.010)

0.168
(0.021)

0.830
(0.020)

4.776
(0.341)

20+ year treasuries (TLT) 0.026
(0.013)

0.015
(0.006)

0.066
(0.014)

0.915
(0.019)

14.94
(3.582)

Multivariate GARCH

a b ν

Scalar-BEKK(1,1) 0.0156
(0.003)

0.973
(0.003)

9.465
(0.349)

Note: Estimated via MLE using data from January 1st 2008 to October 11th 2017. Robust standard
errors in (·).

such that the parameters are estimated consistently. Additionally, we see that α + β ' 1,
meaning that the GARCH models are very persistent and close to being integrated. Similar
to table 2, there is a wide range of estimates of ν for the Student’s t-distribution. The higher
the ν, the closer the asset is to a Gaussian distribution with 20+ year treasuries (TLT) being
the closest though still quite far from Gaussian. The least Gaussian asset returns are the
commodities and High yield bonds (HYG).

Estimates for the ARCH(1) and GJR-GARCH(1,1) univariate models are in table 9 and
10 in the appendix.

7 Simple strategy (ignoring transaction costs)

We start with the simple strategy where the investor ignores transaction costs in his objective
function corresponding to equation (26). First, we delve into the dynamics of the model to
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understand how shocks impact this equation and, thereby, the weights. Then, we show per-
formance before (gross return) and after subtracting transaction costs (net return) to highlight
the importance of adjusting for transaction costs.

7.1 Dynamics of the simple strategy

As explained in section 3, the GARCH type models capture the persistent variances and
covariances of asset returns. For an investor seeking to minimize portfolio variance, the effects
of past shocks and conditional (co)variances on future (co)variances are vital to understanding
how these affect the optimal weights.

To illustrate the dynamics of the simple strategy, we model three of the assets for 10.000
periods from t = −5000 to t = 5000 and give a single shock of -2% to S&P500 ETF at t = 0,
and plot how the weights of the different assets change and converge back to their long-run
equilibrium. We model all correlations with a scalar-BEKK(1,1) from equation (12) and (17)-
(21) and only vary the variance model for the individual asset returns. Keep in mind that this
is a very artificial setup with only one shock in 10.000 periods which does not replicate real
time-series.

The weights, that the simple strategies (and sophisticated strategies) diverge from and
converge back to after a shock hits, are given by the minimum conditional covariance matrix,
which is a combination of the minimum conditional variance, σ2

MIN, from equation (9) and the
minimum conditional correlations. The constant variance term, ω, has a significant effect on
σ2

MIN, profoundly affecting the weights. High-yield bonds have the lowest minimum conditional
variance, with Brent crude oil futures having the highest. We see the result in the IRF plots,
where the investor prefers High-yield bonds the most and Brent crude oil the least. This is
most profound for the simple ARCH(1), where the weights continuously oscillate around the
weights from the minimum conditional covariance estimate.

For the simple dynamic strategy, there are two primary dynamic effects to consider: how
the conditional variance responds to shocks and how persistent the impact of the shock is for
the conditional variance. How the conditional variance responds to a shock is dictated by α
and also κ for the GJR-GARCH model. The higher α and κ is, the more the conditional
variance of the assets increases in the period following a shock. β models the persistence of
the shock for the conditional variance - the closer β is to one, the more persistent the variance
process is, and by extension, the slower the weights converge back.

Consider the simple ARCH(1) in figure 7 where we plot the optimal weights and the
conditional volatility estimates.

In figure 7 panel (b), the volatility of the S&P500 ETF spikes from 1.1 to 2.2 from period
t = 0 to t = 1 as the shock of −2 hits. Then in period t = 2, the volatility returns to
1.1 as the shock exits the model. Thus, we see the lack of volatility persistence from the
ARCH(1) model. Looking at the weight of the S&P500 ETF, the allocation drops at period
t = 1 because the investor now perceives the S&P500 as riskier than treasuries and crude
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Figure 7: Impulse response functions of vMVP
t for the simple ARCH(1) strategy

(a) Portfolio weights, vMVP
t (b) Volatility, σt

oil. Still, at period t = 2, the allocation goes back very close to the pre-shock value as the
shock is now out of the model, but the model still shows some persistence as the weights
fully converge after around 100 periods. This persistence, although barely visible, comes from
the conditional correlations between the asset returns, which the shock also affects at period
t = 1. The changes in the conditional correlations are minimal as a ≈ 0.01 and very persistent
as b ≈ 0.96 in the scalar-BEKK model for the conditional correlations. Recall from section
3.2, that the ARCH(1) converged back too quickly to its unconditional variance compared to
empirical estimates, which also shows in the weights, which converge back very soon after the
shock. So, the volatility estimates are by far the most important factor for the investor’s asset
allocation in the simple ARCH(1) strategy, with the correlations accounting for a tiny fraction.
Recall from section 3.2, that the ARCH(1) converged back quicker than empirical estimates
indicated, which was fixed mainly by the GARCH(1,1) model from equation 8. Will the simple
GARCH(1,1) weight dynamics show persistence as the conditional variance in figure 2?

In figure 8, we see the conditional volatility and optimal weights for the simple GARCH(1,1)
strategy after an identical shock of -2%. Here we see a different dynamic to the simple
ARCH(1) strategy. In figure 8 panel (b), the volatility of the S&P500 ETF increases much
less, courtesy of lower α estimates. However, the volatility is now persistent and decays
exponentially to the minimum conditional variance after roughly 30 periods at t = 30. The
sticky volatility profoundly affects the weights where we observe a ’two-stage’ convergence.
In the first stage, both the conditional correlations and conditional variances converge back,
roughly from period t = 1 to t = 30. At this point, the conditional variance has fully converged,
and the remaining dynamics are due to the conditional correlations, which converge very slowly.
This effect is visible in panel (a), where the weight of the S&P500 ETF converges quickly in
period t = 1 to t = 30 and then very slowly for the remaining periods.

In conclusion, using a GARCH(1,1) for the conditional variance adds more persistence to
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Figure 8: Impulse response functions of vMVP
t for the simple GARCH(1,1) strategy

(a) Portfolio weights, vMVP
t (b) Volatility, σt

the weights. Recall the "leverage effect" from section 3.2, where negative shocks, parameterized
with α + κ, generally have a more significant effect on the variance than positive shocks, α.
How will the model that captures the leverage effect impact the weight dynamics?

The univariate GJR-GARCH(1,1) captures the leverage effect with the α parameter to
positive shocks and α + κ parameters to negative shocks. In figure 9, we plot the conditional
variance and optimal weights for the simple GJR-GARCH(1,1). In panel (b), the volatility of

Figure 9: Impulse response functions of vMVP
t for the simple GJR-GARCH(1,1) strategy

(a) Portfolio weights, vMVP
t (b) Volatility, σt

the S&P500 ETF increases to 1.2 in period t = 1, which is larger than the GARCH(1,1) model
increase of 0.9, thanks to the leverage effect. The higher volatility results in a slightly larger
weight adjustment of 1%-point for the simple GJR-GARCH(1,1) than the simple GARCH(1,1).
Thus, there is a non-linear decreasing relationship between variance and weights. Overall, the
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simple GJR-GARCH(1,1) strategy exhibits a similar ’two-stage’ convergence to the simple
GARCH(1,1) strategy, resulting in identical weight dynamics in panel (a). The differences in
the long-run weights is due to different minimum conditional variances of the two models. In
the GJR-GARCH models, estimates of α are often around 0 and estimates of κ around 0.2.
Therefore, positive shocks do not affect the conditional variance and weights by extension.
We see the lack of response to positive shocks in figure 24 in the appendix, where we give the
S&P500 ETF a positive shock of 2%. The shock does not increase the conditional variance
and thus results in negligible effects on the weights, with the only dynamics coming from
the conditional correlations. Therefore, figure 24, shows the pure effects from the conditional
correlations, which are tiny compared to the impact of the conditional covariance.

To summarize the IRF plots, the conditional covariance and the weights exhibit dynamics
that strongly depend on the univariate model used. Keep in mind that the conditional cov-
ariance never fully converges back to the minimum conditional covariance in the real world as
the asset returns are hit by shocks of varying sizes daily. However, the overall dynamics that
the investor allocates less capital to assets perceived as riskier immediately after a shock hits
and then slowly changes the allocation back as the volatility subsides will remain moving to
real-world data.

Another feature of the simple and sophisticated strategies is that portfolio weights oscillate
around the estimated unconditional sample covariance weights. To illustrate this, we plot the
weights for two assets from the unconditional covariance (the dotted lines) and the weights
from the (G)ARCH model’s conditional covariance (the solid lines).

Figure 10: Portfolio weights from the unconditional and conditional covariance

(a) Simple ARCH(1) (b) Simple GARCH(1,1)

Note: The dotted lines are the weights from the unconditional covariance

Looking at figure 10, we see that the conditional weights roughly oscillate around the
unconditional weights. The effect is evident in the simple ARCH(1) strategy, where the
weights jump back to the unconditional value when a shock ends. The oscillation is more
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persistent for the simple GARCH(1,1) and the simple GJR-GARCH(1,1) strategy, and the
conditional weights have extended periods below and above their unconditional counterpart.

With a thorough understanding of the dynamics of the model, we move from the artifi-
cial setup to historical backtesting to examine the performance of the simple strategy with
real-world data, answering the question: "What would the approximate performance of our
strategies have been during the last four years?"

7.2 Backtesting the simple strategy

We test the dynamic trading strategies using historical prices by fitting the models on a
sample period and testing them out-of-sample. Our out-of-sample period is 1.000 days and
begins October 12th 2017 and ends October 2nd 2021. The model is thus only fitted with data
from before this period to avoid polluting the optimization process with "future" data. We
calculate the optimal portfolio weights for each period using the simple strategies from section
4.2.1 where the investor ignores transaction costs, i.e., an investor with the objective function
of equation (26). We assume that rebalancing is feasible at closing prices. See algorithm 1 in
the appendix for a detailed explanation of the backtesting procedure. We measure performance
before (gross return) and after subtracting transaction costs (net returns).

7.2.1 Backtesting the simple strategy with all assets

We start by backtesting the simple strategy for all 11 assets. First, we look at the minimum
variance portfolio weights of the simple ARCH(1) strategy in figure 11 panel (a).

Historical dynamic portfolio weights
Here, we see that the weights fluctuate heavily around the weights given by the unconditional
covariance estimate, as shown in section 7.1. Recall from the section on dynamics that the
ARCH(1) shows little to no persistence in the weights, which is present for all assets but easily
spotted for 20+ year government bonds and High-yield bonds. Thus, every time a shock hits,
the investor rebalances depending on the size of the shock, which will later turn out to be very
costly in transaction costs.

Moving on to the simple GARCH(1,1) strategy, we plot the minimum variance portfolio
weights in figure 11 panel (b). In contrast to the weights of the simple ARCH(1) strategy
in panel (a), the weights given by the simple GARCH(1,1) strategy are more persistent and
slowly converge to back as explained in section 7.1 rather than jump back as in the simple
ARCH(1) strategy. The main difference between the IRF plots and this is the number of
shocks that hit the model in the real world such that the weights never fully converge back.

The weights of the GJR-GARCH(1,1) strategy shown in figure 26 in the appendix are
similar to those given by the simple GARCH(1,1) strategy. The main difference between the
two is that the drops in the weights given by the simple GJR-GARCH(1,1) strategy are slightly
larger than the simple GARCH(1,1) strategy caused by the asymmetric responses to shocks
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Figure 11: Portfolio weights of the simple strategy, all assets

(a) ARCH(1) weights, vMVP
t (b) GARCH(1,1) weights, vMVP

t

in the GJR-GARCH(1,1). An important detail is that the extra adjustment of the weights
for the simple GJR-GARCH(1,1) strategy compared to the simple GARCH(1,1) is the most
costly as transaction costs are quadratic.

For the simple strategies, it is evident that significant portfolio changes happened during
the market crash caused by the COVID-19 pandemic of March and April 2020, especially for
the ARCH(1). Additionally, the bond ETFs unsurprisingly dominate the portfolio regardless
of the choice of variance model because the bond ETFs have the lowest estimated volatility of
all assets, which is attractive for minimum variance investors.

Historical performance
Recall that we are interested in minimum variance portfolios, which makes the standard devi-
ation a vital performance measure. Still, we also report the average return and risk-adjusted
return in the form of Sharpe ratios because a low-risk strategy that loses all its money is not
desirable.

Looking at gross returns in the top of table 5, the simple GARCH(1,1) has the lowest annu-
alized standard deviation of 6.3%, closely followed by the GJR-GARCH(1,1) with a standard
deviation of 6.5%. Even when the variance is modeled by the very simple ARCH(1,1), the
annualized standard deviation is 7.8%. Compare this to the Equal-weight and Buy-and-hold
with an annualized standard deviation of 15.7% and 7.8%. Thus, the simple strategies have
lower or similar volatility than the benchmark strategies before transaction costs. Henceforth,
we refer to every annualized measure without the "annualized" prefix and write volatility
instead of standard deviation. In terms of the Sharpe ratio, the Buy-and-hold strategy has
the highest Sharpe ratio of 1.15, closely followed by the simple GARCH(1,1) strategy with
a Sharpe ratio of 1.03 and the Equal-weight as the worst-performing with a Sharpe ratio of
0.71. The simple strategies perform well in gross returns as they beat the Equal-weight and
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Figure 12: Cumulative returns of the simple strategy, all assets

(a) Gross return (b) Net return

perform similar to the Buy-and-hold. But can the simple strategies replicate this success in
net returns given the high trading volume present in figure 11?

The short answer: No. After transaction costs, the simple strategies unsurprisingly do far
worse. Especially the simple ARCH(1) strategy as its trading volume is extremely high, as
seen in both figure 11 panel(a) and table 5. The simple ARCH(1) loses 100% of its portfolio
value to transaction costs and becomes worthless after 2.5 years. Transaction costs cause
drops in portfolio value which has an unfortunate knock-on effect on portfolio volatility. With
quadratic transaction costs, the rebalancing of the simple ARCH(1) strategy is costly. It
greatly hurts performance measured in net returns where it earns -100% as the investor goes
bankrupt with a volatility of 68.7%.19

In contrast to the simple ARCH(1) strategy, the simple GARCH(1,1) strategy does not
suffer as much from transaction costs. The persistent covariance estimates of the simple
GARCH(1,1) imply less trading, so it annually loses 24.1% of its portfolio value to transaction
costs compared to the 100% of the simple ARCH(1) strategy. The lower transaction costs im-
prove net returns to -19.3% and decrease volatility to 11%, which is still atrocious performance
in absolute terms. The main reason the simple GARCH(1,1) strategy performs better than
the simple ARCH(1) strategy is its dynamics. Firstly, the simple GARCH(1,1) strategy reacts
less to shocks courtesy of lower α estimates than the simple ARCH(1) strategy. Secondly, the
simple GARCH(1,1) converges back exponentially after a shock leaves the model. The simple
ARCH(1,1) strategy converges back immediately. The two effects make the simple ARCH(1)
strategy perform a violent adjustment when a shock hits and an often equally significant ad-
justment back as the shock leaves. The simple GARCH(1,1) strategy makes one moderate

19Note that the interpretation of the Sharpe ratio becomes rather difficult with negative returns. The
simple ARCH(1) strategy has a better Sharpe ratio than the other GARCH strategies even though the simple
ARCH(1) performs worse in all aspects, with much lower net returns and higher volatility.
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Table 5: Annualized performance of the simple strategy, all assets

Strategy Std. deviation Return Sharpe ratio Transaction costs

Before transaction costs
ARCH(1) 0.0788 0.0724 0.9186
GARCH(1,1) 0.0628 0.0644 1.0246
GJR-GARCH(1,1) 0.0650 0.0626 0.9632
Equal-weight 0.1565 0.1105 0.7062
Buy-and-hold 0.0780 0.0894 1.1462

After transaction costs
ARCH(1) 0.6869 -1.0000 -1.4559 100.00%
GARCH(1,1) 0.1098 -0.1928 -1.7553 24.144%
GJR-GARCH(1,1) 0.1227 -0.2263 -1.8442 27.137%
Equal-weight 0.1626 0.0517 0.3182 5.2374%
Buy-and-hold 0.0780 0.0894 1.1462 0%

Note: Transaction costs are the relative annual share of the portfolio lost to transaction costs

adjustment when the shock hits and several minor adjustments afterward. The latter is far
less costly and explains part of the difference in net return, the other reason being the more
accurate volatility predictions of the simple GARCH(1,1).

The simple GJR-GARCH(1,1) strategy is very similar to the simple GARCH(1,1) strategy
but performs a bit worse. The strategy earns a net return of -22.6% with a volatility of 12.3%.
The poor performance is likely due to asymmetry of the GJR-GARCH(1,1) variance model
such that when a negative shock hits the simple GJR-GARCH(1,1) adjusts slightly more than
the simple GARCH(1,1) strategy. Since the model have quadratic transaction costs, a slight
extra adjustment is the most expensive. This is evident from table 5 where the simple GJR-
GARCH(1,1) strategy annually loses 27.1% of its portfolio value to transaction costs, which is
three percentage points more than the simple GARCH(1,1) strategy, which adds up over four
years.

The Buy-and-hold strategy is unaffected by transaction costs as it does not rebalance and
thus takes the lead with the lowest volatility after transaction costs. The Equal-weight strategy
is only moderately affected by transaction costs as it only needs to make minor adjustments
every period. It earns net returns of 5.2% and has a slightly higher volatility of 16.3%.

To summarize, the simple strategy can reduce portfolio risk when measuring gross returns
compared to the Buy-and-hold and Equal-weight strategies. Gross Sharpe ratios are higher
than the Equal-weight strategy but slightly lower than the Buy-and-hold strategy. However,
after transaction costs, the simple strategy performs poorly as costly rebalancing chisels away
at the value of the portfolio.

The weights in figure 11 show that the minimum variance portfolios heavily favor non-
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equity ETFs. In gross return, the GARCH strategy is successful at reducing risk. Is this due
to the simple strategies favoring bonds, or does it also apply when restricting it to only equity
ETFs?

7.2.2 Backtesting the simple strategy with stocks only

From figure 11 panel (a)-(b), it is evident that the simple strategies mainly consist of 20+ years
treasuries and high-yield corporate bonds. But can the forecast of Ωt+1, Ωt+1|t, help reduce
portfolio risk when the investor does not have access to safe assets with low correlations
to market risk? To answer this, we restrict the asset universe to stock ETFs, leaving out
commodities and bonds.

Historical dynamic portfolio weights
From figure 13 panel (a)-(b),20 we see that the weight dynamics of the simple strategies do not
change from the case with all assets. However, a greater span in portfolio weights from -50%

Figure 13: Portfolio weights of the simple strategy, stocks

(a) ARCH(1) weights, vMVP
t (b) GARCH(1,1) weights, vMVP

t

to 125% indicates that the optimization takes on more extreme positions to obtain the lowest
possible risk. Consider the S&P 500 index, which changes from weights of around 125% to as
low as -25% for the simple ARCH(1) strategy. After the Covid-19 pandemic market crash of
March and April 2020, we see even more significant weight fluctuations in the simple strategies.
However, it is most visible for the simple ARCH(1) strategy in panel(a).

Historical performance
The significant, frequent changes are very costly, evident from the differences between gross
returns in panel (a) and net returns in panel (b) of figure 14. It takes 14 days for the simple
ARCH(1) strategy to lose 100% of the portfolio value almost exclusively from transaction

20with the weight of the simple GJR-GARCH(1,1) in the appendix in figure 26 panel (b)

page 45 of 85



Dynamic Trading with a GARCH volatility model

costs. For the simple GARCH(1,1) and GJR-GARCH(1,1) strategies, it takes roughly two
years for both strategies to lose everything because of transaction costs, with both of them
annually losing 84%.

Figure 14: Cumulative performance of the simple strategy, stocks

(a) Gross return (b) Net return

The impact of transaction costs can also be seen in table 6, where the simple ARCH(1)
strategy earns a gross return of 11%. In net terms, this translates to an abysmal return of
-100%. The simple GARCH(1,1) and GJR-GARCH(1,1) earn gross returns of 8.9% and 9.1%,
respectively, and a net return of -100%. The failure of these strategies undoubtedly shows
why investors should adjust for transaction costs for these strategies to be viable.

To answer whether the simple strategy can reduce risk when only considering equity ETFs,
the simple GARCH(1,1) and GJR-GARCH(1,1) strategies can reduce risk - even in this restric-
ted asset universe. The simple GARCH(1,1) strategy has the lowest volatility of 18.7%, closely
followed by the simple GJR-GARCH(1,1) strategy of 18.9% compared to 22% for the Buy-
and-hold and 20.8% for the Equal-weight strategy. The picture is very different when looking
at net returns, where the performance of the simple strategies suffers heavily from very high
transaction costs. Additionally, the Equal-weight and Buy-and-hold strategies obtain better
Sharpe Ratios in both gross and net returns.

The main takeaway is that it is vital to adjust for transaction costs when setting up
an investment strategy. As seen in the performance table above, a good strategy before
transaction costs can be a downright terrible strategy after transaction costs if the portfolio
changes are sufficiently large. Thus, can we improve the performance of our dynamic strategies
after transaction costs by making the investor anticipate and adjust for transaction costs when
rebalancing?
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Table 6: Annualized performance of the simple strategy, stocks

Strategy Std. deviation Return Sharpe ratio Transaction costs

Before transaction costs
ARCH(1) 0.2082 0.1105 0.5306
GARCH(1,1) 0.1876 0.0892 0.4755
GJR-GARCH(1,1) 0.1898 0.0912 0.4808
Equal-weight 0.2082 0.1117 0.5366
Buy-and-hold 0.2197 0.1732 0.7882

After transaction costs
ARCH(1) 4.3101 -1.0000 -0.2320 100.00%
GARCH(1,1) 0.9179 -1.0000 -1.0894 83.949%
GJR-GARCH(1,1) 0.8117 -1.0000 -1.2320 83.779%
Equal-weight 0.2083 0.0951 0.4565 1.4989%
Buy-and-hold 0.2197 0.1732 0.7882 0%

Note: Transaction costs are the relative annual share of the portfolio lost to transaction costs

8 Sophisticated strategy (adjusting for transaction costs)

We continue with the more complex case where the investor adjusts for transaction costs
(the sophisticated strategy). Specifically, the investor now adjusts for transaction costs in his
objective function (see equation 29) by being penalized for portfolio changes. We also explore
how transaction costs affect the dynamics of the model and, thereby, the optimal weights vt.

8.1 The simple strategy and the normalized aim portfolio

First, we address the point in section 4.2.2 about the normalized aim portfolio being almost
equivalent to the simple strategy from equation (28), i.e., a time-varying minimum variance
portfolio. As an example, we plot the weights for two random assets of both portfolios over
an out-of-sample period of 1000 days in figure 15. We observe very similar weights in both
portfolios, except for some noise partly due to instability when normalizing the weights of the
aim portfolio when the aim portfolio nearly sums to 0. The similarity is promising for our
otherwise incomplete theoretical results. The workaround is not ideal, but we have to leave it
as a topic for further research and move on. However, it is comforting that the normalized aim
portfolio closely resembles the simple strategy because it is the minimum variance portfolio
that ignores transaction costs. So, we interpret the sophisticated strategy as having the
same target as the simple strategy but with an additional element to optimally account for
transaction costs.
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Figure 15: Similarities of the normalized aim portfolio and the simple strategy

Note: The two assets are S&P500 (solid line) and 20+ year Treasuries (dotted line)

8.2 The dynamics of the sophisticated strategy

Similar to the simple strategy, we illustrate the dynamics of the sophisticated strategy by
modeling three assets for 10.000 periods from t = −5000 to t = 5000. We give a single shock
of -2 to S&P500 ETF at t = 0 and plot how the weights of the different assets change and
converge back to their long-run equilibrium. How does penalizing the investor for trading
change the dynamics of the strategy?

Consider the sophisticated ARCH(1) strategy with γD = 1.52e−6 which is the empirically
calibrated level. Figure 16 panel (a) shows that the volatility spikes to an identical level as the
simple strategy one period after the shock hits. The remaining dynamics of the sophisticated
strategies depend on two factors: Firstly, the increased volatility results in adjustments to the
investor’s aim portfolio, which strongly resembles the simple strategy in 7.1. Secondly, the
investor’s actual adjustment amount depends negatively on transaction costs.

In figure 16 panel (b), we consider the sophisticated ARCH(1) strategy with γD = 1.52e−6.
At this level of ex-ante transaction costs, the investor almost completely adjusts his portfolio
(solid line) to the aim portfolio (dotted line). We interpret this as the investor believing that
the future risk reduction from changing his portfolio outweigh the transaction costs associated
with rebalancing. Thus, the dynamics are very similar to the simple strategy in section (7.1).
Unfortunately, it seems like our sophisticated strategy does not make a noticeable difference
to the weight dynamics. How can we alleviate this problem?

We implement an idea similar in spirit to [Hautsch and Voigt, 2019] where we increase
the parameter γD above the empirically calibrated value to punish portfolio changes more.
Note that this does not increase the actual cost of transactions, but the investor thinks it
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Figure 16: Impulse response functions of vMVP
t for the sophisticated ARCH(1)

(a) Volatility, σt (b) Portfolio weights, vMVP
t , γD = 1.52e−6

Note: The aim portfolio is the dotted lines, the optimal portfolio weights are the solid lines

does ex-ante. We implement transaction costs tuning by modifying equation (33) which now
becomes:

vt =
vt−1 + (γ̃DΩt+1|t)

−1Avv
[
vt−1 − aimt

1′aimt

]
1′(vt−1 + (γ̃DΩt+1|t)−1Avv

[
vt−1 − aimt

1′aimt

]
)

Where γ̃D is the parameter we tune. Intuitively, the bigger γ̃D is, the less the investor trades as
transaction costs increase. The interpretation is that the investor perceives transaction costs
as higher than what he actually incurs. The convergence towards the aim portfolio happens
quickly for the calibrated value of γD. We only show the sophisticated ARCH(1) strategy, but
the convergence is quick in all the sophisticated strategies. The fast convergence turns out
to be very costly with quadratic transaction costs where large portfolio changes are punished
heavily. Increasing γ̃D increases the penalty of trading such that

lim
γ̃D→+∞

vt =
vt−1

1′vt−1

the investor will not rebalance. To illustrate the effects of tuning, we plot the dynamics for
the sophisticated strategies for γ̃D ∈ {1.52e−6, 3e−6, 1e−5}, where 1.52e−6 is the empirically
calibrated value. Increasing the ex-ante transaction costs highlights the investor’s trade-off
between lowering transaction costs and obtaining a portfolio with expected lower risk.

Consider ex-ante transaction costs with γ̃D = 3e−6, roughly double the empirical estimate.
Figure 17 panel (a) shows that the investor adjusts halfway towards the aim portfolio. After
the shock subsides, the aim portfolio immediately returns to the pre-shock weights given
the dynamics of the simple ARCH(1) strategy. However, the investor’s portfolio only slowly
returns to the pre-shock weight, as changing the portfolio is now perceived as costlier, with
the convergence to the aim portfolio taking roughly five periods.
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Figure 17: Impulse response functions of vMVP
t for the sophisticated ARCH(1)

(a) Portfolio weights, vMVP
t , γ̃d = 3e−6 (b) Portfolio weights, vMVP

t , γ̃d = 1e−5

Note: The aim portfolio is the dotted lines, the optimal portfolio weights are the solid lines

In figure 17 panel (b), we see that further increasing γ̃D to 1e−5, results in even smaller ad-
justment steps towards the aim portfolio and an even slower adjustment back to aim portfolio
after the shock subsides. Despite the small reaction to the shock, the investor’s portfolio takes
roughly 15 periods to converge to the aim portfolio. Note that the aim portfolio is identical
across different values of γ̃D, only the adjustment of the investor’s actual portfolio changes.
In summary, tuning γ̃D seems to fix the quick convergence of the empirically calibrated γD

We plot the impulse response functions of the GARCH(1,1) case in figure 18. Like the

Figure 18: Impulse response functions of vMVP
t for the sophisticated GARCH(1,1)

(a) Volatility, σt (b) Portfolio weights, vMVP
t , γ̃d = 1.52e−6

simple strategy, the conditional volatility plotted in panel (a) spikes and then exponentially
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(c) Portfolio weights, vMVP
t , γ̃d = 3e−6 (d) Portfolio weights, vMVP

t , γ̃d = 1e−5

Note: The aim portfolio is the dotted lines, the optimal portfolio weights are the solid lines

converges to the equilibrium value. In panel (b) where γ̃D = 1.52e−6, we see the investor
immediately adjusts to the aim portfolio, behaving almost identically to the simple strategy.

In panels (c) and (d), we plot the cases with increased ex-ante transaction costs. The
investor’s portfolio first undershoots and then overshoots the aim portfolio. This is most clear
in the case where γ̃D = 1e−5, where the aim portfolio spikes one period after the shock, which
the investor slowly adjusts to as trading is costly. Then, as the volatility converges back to
equilibrium, the aim portfolio converges faster than the weights, which adjust rather slowly
and are thus overtaken by the aim portfolio.

The sophisticated GJR-GARCH(1,1) in figure 19 is very similar to the GARCH(1,1)
case but with a more significant effect from the shock given the asymmetry of the GJR-

Figure 19: Impulse response functions of vMVP
t for the sophisticated GJR-GARCH(1,1)

(a) Volatility, σt (b) Portfolio weights, vMVP
t , γ̃d = 1.52e−6
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(c) Portfolio weights, vMVP
t , γ̃d = 3e−6 (d) Portfolio weights, vMVP

t , γ̃d = 1e−5

Note: The aim portfolio is the dotted lines, the optimal portfolio weights are the solid lines

GARCH(1,1).Thus, we see the investor react more for the GARCH(1,1) when γ̃D is equal to
3e−6 and 1e−5. As transaction costs are quadratic, the extra adjustment is very costly for
the investor.

Across volatility models, we see trading volume decreases as γ̃D increase. This is both
unsurprising as the investor perceives trading as more costly and is similar to the result of
[Gârleanu and Pedersen, 2013]’s proposition 2.

As mentioned before, the forecast of Ωt+1 is not necessarily accurate. Thus, it might be
beneficial to consider backtesting for a higher γ̃D than the empirically calibrated γD = 1.52e−6

to limit extreme and costly portfolio movements. However, limiting rebalancing too much
prevents the investor from adjusting his portfolio when new information becomes available.
Thus, a trade-off exists between trading a lot to gain lower expected future portfolio risk and
transaction costs. To find the optimal parameter value, we plot the volatility and Sharpe ratio
for different γ̃D for the sophisticated strategies and the benchmark strategies.

Looking at figure 20 panel (a) and (b), we see that for a portfolio of all 11 assets, the
minimum volatility is reached for a γ̃D of around 1.3e−5 with the Sharpe ratio converging to
the Buy-and-hold portfolio as γ increases. Thus, a clear trade-off between lowering risk and in-
creasing the Sharpe ratio is evident for the case with all 11 assets. The sophisticated ARCH(1)
still performs poorly for this γ̃D so we also consider 1e−4. The sophisticated ARCH(1) reaches
its minimum volatility at this value. γ̃D = 1e−4 also yields a higher Sharpe ratio for the other
sophisticated strategies.

Suppose the investor’s asset universe is limited to the two commodities, which we plot in
figure 20 panel (c) and (d). In that case, we obtain a higher Sharpe ratio and lower volatility
than the Buy-and-hold and Equal-weight strategy with a single optimal γ̃D of around 1e−4.21

Unsurprisingly, as γ̃D increases, the performance of all the sophisticated strategies con-
21The subset using all stocks and all bonds are in the appendix 25
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Figure 20: Annualized performance for different values of γ̃D for GARCH(1,1)

(a) Standard deviation, all assets (b) Sharpe Ratio, all assets

(c) Standard deviation, commodities (d) Sharpe Ratio, commodities

verges towards the performance of the Buy-and-hold portfolio as trading decreases when γ̃D
increases. We will use the optimal parameter values in the following backtesting section.

8.3 Backtesting the sophisticated strategy

We proceed with historical backtesting for an investor who minimizes portfolio risk and is
penalized for trading corresponding to an investor with an objective function given by equation
(29). The exact backtesting process can be seen in algorithm 2 in the appendix. As mentioned
in 8.2 section above, different values of ex-ante transaction costs may greatly benefit the
performance of the investor’s portfolio. Therefore, we backtest for multiple values of γ̃D.

8.3.1 Backtesting the sophisticated strategy with all assets

We consider the same 11 assets as for the simple strategy. We will first consider the effects of
adjusting for transaction costs on the real-world weights.
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Historical dynamic portfolio weights
As for the sophisticated strategy, we first plot the portfolio weights for each variance model for
γ̃D equal to 1.52e−6 (Calibrated value), 1.3e−5 (Lowest volatility) and 1e−4 (Higher Sharpe
ratio). The weights for the case where γ̃D = 1.52e−6 are almost identical to the case where
the investor ignores transaction costs, and thus, we have placed these plots in the appendix.22

First, consider the sophisticated ARCH(1) strategy in figure 21 panel (a)+(b). Recall from
section 7.2 that the optimal weights fluctuated heavily in the simple ARCH(1). In figure 21

Figure 21: Portfolio weights of the sophisticated strategy, all assets

(a) ARCH(1), γ̃D = 1.3e−5 (b) ARCH(1),γ̃D = 1e−4

(c) GARCH(1,1), γ̃D = 1.3e−5 (d) GARCH(1,1), γ̃D = 1e−4

Note: The weights for the sophisticated GJR-GARCH(1,1) are in figure 28 in the appendix

panel (a)+(b) with γ̃D of 1.3e−5 and 1e−4, the weights are clearly more persistent, and any
changes to the weights happen over a far greater period than in the simple strategy. The main
differences between γ̃D of 1.3e−5 and 1e−4 is that the changes of the weights are smaller for

22See figure 27
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γ̃D = 1e−4 and that the small fluctuations present in the case with 1.3e−5 are almost gone for
γ̃D = 1e−4 as the weights here are closer to a smooth line. The reason for this smoothing is
that the higher ex-ante transaction costs act as a dampener on the fluctuating aim portfolio as
explained in section 8.2. This can be interpreted as the investor adjusting more for transaction
costs and that large adjustments require multiple shocks over an extended period like in March
and April 2020.

The optimal weights from the GARCH(1,1) model are depicted in figure 21 panel (c) and
(d). Compared to the simple ARCH(1) portfolio, the portfolio changes become smoother and
slower, thus, adding an extra layer of persistence. The sophisticated GARCH(1,1) is analogous
to the sophisticated GJR-GARCH(1,1) in figure 28 and has almost identical dynamics and
very similar weights. The portfolio weights of the three different models become more and
more identical as γ̃D increases as they all converge to the Buy-and-hold strategy as trading
decreases.

Performance measures
We now evaluate the performance measurements for the sophisticated strategies. First, we see
that the gross return in figure 22 panel (a) is almost identical to the simple strategy in figure
12 panel (a). Therefore, the sophisticated GARCH strategies have a very similar performance
to the simple strategies in terms of gross return. For example, the sophisticated GARCH(1,1)
has gross returns of 6.5% and volatility of 6.3% compared to 6.4%, and volatility of 6.3% in
the simple GARCH(1, 1).

After transaction costs, the sophisticated GARCH strategies only perform mildly better
than their simple counterparts. Using the empirically calibrated γD only causes a minor
dampening of the investor’s trading activity and thus only slightly improves the performance,
which ideally shouldn’t be the case. Recall that the simple GARCH(1,1) strategy earns a net
return of -19.3% at 11% volatility, compared to the sophisticated version, which yields a net
return of -18.4% at 11% volatility, a rather insignificant improvement. A similar pattern holds
for the GJR-GARCH(1,1) strategy. The performance of the sophisticated strategies is far
worse than the Equal-weight and Buy-and-hold. Thus, the empirically calibrated γ does not
significantly improve performance for the sophisticated strategies. This is further backed by the
minimal drop in transaction costs in table 7 where the sophisticated ARCH(1) strategy loses
100% annually, identical to the simple ARCH(1). The sophisticated GARCH(1,1) strategy
and the sophisticated GJR-GARCH(1,1) strategy loses 23.5% and 26.1% respectively, which
is noticeably lower than their simple counterparts but still bad in absolute terms.23

This naturally begs the question as to why this penalization does not improve performance?
The primary reason is probably forecast errors as the investor believes that the changes he

23We acknowledge the absurdity of having a multiyear strategy with annualized transaction costs of 100%.
But sometimes, the ARCH(1) makes extreme changes to its portfolio such that the transactions costs exceed
the portfolio value. This can cause annual transaction costs of +100%. We cap the cost at 100%, assuming
the investor cannot lose more than everything.
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Figure 22: Cumulative performance of the sophisticated strategy, all assets

(a) Gross returns (b) Net returns for γ̃D = 1.52e−6

(c) Net returns for γ̃D = 1.3e−5 (d) Net returns for γ̃D = 1e−4

makes to his portfolio will reduce the risk of the portfolio in the next period to such a degree
that the significant transaction costs the investor incurs are made up for in lower future
expected risk. But as Ωt+1|t is a forecast and not the true covariance, the changes to the
weights might end up not being as beneficial as the investor believes. Thus, further reducing
the trading volume may be beneficial as it reduces transaction costs and limits the investor’s
extreme positions. This can be interpreted as the investor only changing the portfolio when
deemed absolutely necessary.

Increasing the ex-ante transaction costs γ̃D to 1.3e−5 causes the investor to reduce trad-
ing volume, and by extension, the transaction costs the investor incurs. This drastically im-
proves the performance of the sophisticated GARCH(1,1) and sophisticated GJR-GARCH(1,1)
strategies. In table 7, the sophisticated ARCH(1) strategy does not improve as annualized
transaction costs of 100% still wipe it out. In contrast, the sophisticated GARCH(1,1) and
GJR-GARCH(1,1) strategies perform admirably, earning a net return of 3.8% at 3.4% with
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Table 7: Annualized performance of the sophisticated strategy, all assets

Strategy Std. deviation Return Sharpe ratio Transaction costs

Before transaction costs
ARCH(1) 0.0794 0.0735 0.9257
GARCH(1,1) 0.0632 0.0651 1.0299
GJR-GARCH(1,1) 0.0654 0.0640 0.9788
Equal-weight 0.1565 0.1105 0.7062
Buy-and-hold 0.0780 0.0894 1.1462

After transaction costs γ̃D = γD = 1.52e−6

ARCH(1) 0.6890 -1.0000 -1.4514 100.00%
GARCH(1,1) 0.1114 -0.1846 -1.6569 23.553%
GJR-GARCH(1,1) 0.1257 -0.2136 -1.7000 26.174%
Equal-weight 0.1626 0.0517 0.3182 5.0201%
Buy-and-hold 0.0780 0.0894 1.1462 0%

After transaction costs γ̃D = 1.3e−5

ARCH(1) 0.6415 -1.0000 -1.5588 100.00%
GARCH(1,1) 0.0630 0.0375 0.5943 2.0706%
GJR-GARCH(1,1) 0.0648 0.0343 0.5291 2.4152%

After transaction costs γ̃D = 1e−4

ARCH(1) 0.0670 0.0529 0.7890 0.1038%
GARCH(1,1) 0.0696 0.0522 0.7507 0.01630%
GJR-GARCH(1,1) 0.0709 0.0543 0.7660 0.01902%

Note: Transaction costs are the relative annual share of the portfolio lost to transaction costs. The
actual transaction costs the investor pays are identical for each γ̃.

volatility at 6.3% and 6.5%, respectively. In this case, the GARCH(1,1) and GJR-GARCH(1,1)
have lower volatility than the Equal-weight and Buy-and-hold but at a lower net return with
the Buy-and-hold yields the highest Sharpe ratio of 1.14. The increased ex-ante transaction
costs cause lower trading volume for the sophisticated GARCH(1,1) and GJR-GARCH(1,1)
strategies and thus lower transaction costs of 2.1% and 2.4% annually, which is a drastic re-
duction. The lower transaction costs boost net returns and lower volatility compared to the
empirically calibrated value. The sophisticated ARCH(1) strategy still performs poorly for
γ̃D = 1.3e−5. However, for the sophisticated GARCH(1,1) and GJR-GARCH(1,1) strategies,
γ̃D = 1.3e−5 is the optimal γ̃D in terms of reducing volatility, i.e., the optimal trade-off
between rebalancing in the face of new information and transaction costs from implementing
these changes.

The investor still loses a moderate sum in transaction costs, especially the sophisticated
ARCH(1), so we further increase the ex-ante transaction costs to γ̃D = 1e−4. Figure 22
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panel(d) shows that all the sophisticated strategies perform very similarly and closely follow
each other throughout the four years. This is due to the considerable ex-ante transaction costs
such that the differences between the covariance predictions of the models are significantly
reduced, which results in the sophisticated ARCH(1), GARCH(1, 1), and GJR-GARCH(1,1)
strategies only having annual transaction costs of 1%, 0.2%, and 0.2% respectively. The
consequence is that the sophisticated strategies have nearly identical performance with Sharpe
ratios of around 0.76. This thoroughly beats the Equal-weight strategies in both volatility and
net return. The Buy-and-hold strategy is also beat in terms of volatility, but it has a higher
Sharpe Ratio than the sophisticated strategies. The reason for the very similar performance
is as γ̃D → ∞ the sophisticated strategies converge to a Buy-and-hold. Thus, the different
covariance forecasts of the models affect the weights less as the rebalancing from these forecasts
is seen as much more costly.

In summary, for the empirically calibrated γD, the sophisticated strategies do not suf-
ficiently adjust for transaction costs resulting in negative net returns or bankruptcy for the
sophisticated ARCH(1). We see significant performance improvements when the ex-ante trans-
action costs increase, especially for lowering volatility. There is a clear trade-off between de-
creasing risk and increasing net returns as γ̃D = 1e−4 has the highest net return of the three
cases but with higher volatility than γ̃D = 1.3e−5. Either the investor can trade more to
reduce risk but at the cost of higher transaction costs or trade less to get higher net return
and volatility with lower transaction costs.

8.3.2 Backtesting the sophisticated strategy with commodities only

As shown in figure 20, the sophisticated strategies outperform the Buy-and-hold and Equal-
weight when only considering the commodities gold and oil. Additionally, gold and oil are
also used by [Gârleanu and Pedersen, 2013], and since our strategies build on their work, it is
interesting to look into the same assets.

Historical weight dynamics
We will not focus on the portfolio weights for this case. They are plotted in figure 29, 30, and
31 in the appendix. They exhibit identical dynamics as the case with all assets and display
the same reduction in trading volume as γ̃D increases.

Historical performance
In terms of gross returns in figure 23 panel (a), the sophisticated strategies have similar
volatility to the Buy-and-hold of around 14.6% and easily beat the Equal-weight, which has
volatility of 24.1%. But the sophisticated strategies have the highest Sharpe Ratio, with the
sophisticated ARCH(1) achieving a ratio of 0.74. It seems that the high trading volume of the
ARCH(1) gives it an edge over the remaining strategies in terms of gross returns. Carefully
comparing our performance to [Gârleanu and Pedersen, 2013] even though we use different
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sample periods, their dynamic portfolio achieves a Sharpe ratio of 0.62 in gross returns, we
see very similar performance.

Figure 23: Cumulative performance of the sophisticated strategy, commodities

(a) Gross returns (b) Net returns for γ̃D = 1e−4

When considering net returns given the empirically calibrated γD in figure 23 panel (b),
we get slightly higher volatility for the sophisticated GARCH(1,1) and GJR-GARCH(1,1)
strategies earning net returns of -5.3 % and -8.8%, respectively as a result of high transaction
costs of 16.7% and 13.8%. The sophisticated ARCH(1) strategy performs poorly given the
large trading volume with transaction costs of 55.4%, resulting in net returns of -50% at a
volatility of 29.5%. Carefully comparing to [Gârleanu and Pedersen, 2013] where their dynamic
strategy earned a Sharpe ratio of 0.58 in net returns, we see our sophisticated strategies have
negative Sharpe ratios for the same reasons as the sophisticated strategies that considered all
assets. Thus, we increase the ex-ante transaction costs to γ̃D = 1e−4.

Increasing γ̃D yields a substantial increase in performance partly in slightly lower volatility
but mainly in higher net returns. For the sophisticated GARCH(1,1) and GJR-GARCH(1,1)
strategies, this results in Sharpe ratios of 0.74 and 0.75, whereas the sophisticated ARCH(1)
earns 0.69. This performance comfortably beats the Equal-weight and the Buy-and-hold
strategies. Additionally, the Sharpe ratios of our sophisticated strategies are slightly higher
than the ratio of 0.58 that [Gârleanu and Pedersen, 2013] found, although we cannot make a
fair and direct comparison.

We briefly consider the sophisticated strategies for completeness for the remaining two
asset classes, bonds and stocks. Consider figure 25 panel (a) and (b) for stocks along with
table 11. We see that the sophisticated strategies outperform the Equal-weight in term of
Sharpe ratios for high values of ex-ante transaction costs but never beats the Buy-and-hold.
For lower values of γ̃D, the sophisticated GARCH(1,1) and GJR-GARCH(1,1) strategies have
lower volatility than the Equal-weight and the Buy-and-hold for a majority of values. Looking
at figure 25 for bonds in panel (c) + (d) and table 12, the sophisticated strategies, especially
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Table 8: Annualized performance of the sophisticated strategy, commodities

Strategy Std. deviation Return Sharpe ratio Transaction costs

Before transaction costs
ARCH(1) 0.1590 0.1176 0.7398
GARCH(1,1) 0.1461 0.0929 0.6355
GJR-GARCH(1,1) 0.1446 0.0976 0.6747
Equal-weight 0.2412 0.1141 0.4733
Buy-and-hold 0.1463 0.0809 0.5531

After transaction costs γ̃D = γD = 1.52e−6

ARCH(1) 0.2951 -0.4988 -1.6905 55.432%
GARCH(1,1) 0.1619 -0.0882 -0.5448 16.695%
GJR-GARCH(1,1) 0.1517 -0.0526 -0.3466 13.751%
Equal-weight 0.2446 0.0275 0.1125 5.2374%
Buy-and-hold 0.1463 0.0809 0.5531 0%

After transaction costs γ̃D = 1e−4

ARCH(1) 0.1450 0.0969 0.6682 0.0794%
GARCH(1,1) 0.1437 0.1056 0.7347 0.0417%
GJR-GARCH(1,1) 0.1442 0.1078 0.7477 0.0419%

Note: Transaction costs are the relative annual share of the portfolio lost to transaction costs. The
actual transaction costs the investor pays is identical for each γ̃

the GJR-GARCH(1,1), have lower volatility than both the Equal-weight and Buy-and-hold
for all ex-ante transaction costs displayed. For high values of γ̃D, the sophisticated strategies
outperform the Equal-weight strategy in Sharpe ratios. The Buy-and-hold is also outperformed
but for a narrower range of ex-ante transaction costs. The main takeaway is that the choice
of asset class(es) is crucial for the performance of the sophisticated strategies.

To summarize, investors need to adjust for transaction costs when trading is costly. An op-
timal low-risk strategy in gross returns can be an atrocious strategy in net returns, such as the
simple strategies and some low γ̃D versions of the sophisticated strategies. It is very beneficial
for the investor to consider optimization under higher transaction costs than what the investor
incurs. Increasing transaction costs ex-ante dampens trading volume and reduces large trades
to reduce future risk that might be slightly spurious given estimation uncertainty. Overall, the
different sophisticated strategies perform well in gross returns with lower annualized portfolio
standard deviations and higher annualized Sharpe Ratios than the Equal-weight and slightly
lower than the Buy-and-hold strategy. For γ̃D ∈ {2.3e−5, 1e−4}, the sophisticated strategies
likewise outperformed the Equal-weight across all measures and yielded a lower annualized
volatility than the Buy-and-hold, which had a higher annualized Sharpe ratio than the soph-
isticated strategies. The sophisticated strategy for high γ̃D shows very similar performances
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to the dynamic trading strategies of [Gârleanu and Pedersen, 2013] when considering the same
assets.

9 Discussion

No one completes a thesis without impactful decisions and tough compromises. Thus, we will
attempt to address some of these choices and explain our thought process behind them.

An obvious question to ask two researchers looking at minimum variance portfolio is why
we haven’t included a risk-less asset. The answer to this is threefold. Firstly, the minimum
variance-seeking investor would always invest 100% into the risk-less asset because it reduces
portfolio risk the most, which is not the most exciting result. Secondly, a genuinely risk-less
asset is a theoretical construction that one could argue doesn’t exist in the real world though
often approximated by US treasuries or a bank account.

Why do we report annualized returns and Sharpe Ratios when we model a minimum
variance investor? We look at minimum variance portfolios because authors like [Jagannathan
and Ma, 2003] have shown that minimum variance portfolios have better out-of-sample Sharpe
Ratios than tangency portfolios. The out-performance of minimum variance portfolios is
because sample estimates of mean returns are a lousy predictor of future returns as shown
[Jobson and Korkie, 1980] resulting in extreme portfolio weights, see [DeMiguel et al., 2009].
But, if we are interested in the return of our portfolio, why did we not implement a factor-type
model or another more complex mean prediction model rather than discard them altogether?
First and foremost, it is beyond the scope of this paper to unite factor models and multivariate
GARCH models. Secondly, as mentioned in section 2.2.1, [Welch and Goyal, 2008] finds that
the estimates of many factor models are unstable, insignificant, and yield spurious results.
Thus, we decided to focus on modeling the conditional covariance.

Regarding modeling the covariance, one might question why we don’t update the model
parameters with the new information that the investor receives while going through the out-
of-sample period. Firstly, continuously updating the model parameters increases the com-
putational effort needed to solve the model dramatically with little to no benefits in return
because the model parameters are unlikely to change significantly with the continuous addition
of new information. Secondly, adding this extra dimension will likely cause mild instability
given the estimation uncertainty, which makes interpreting the results more difficult as there
would be an extra dimension to consider. One could argue that re-estimating the model every
year, for example, might be a good idea to enrich the parameter estimates with new inform-
ation. We will, however, leave this question for future research. Another interesting future
research venture would be to add more sophisticated univariate GARCH models to the DCC
MGARCH model. One could consider the EGARCH model by [Nelson, 1991] or with the
more frequent use of high-frequency data, a Realized GARCH model presented in [Hansen
et al., 2012]. Especially, the latter could increase the forecast accuracy of the conditional
variance and thus improve the forecast of the covariance, decreasing estimation uncertainty
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and increasing investor utility.
Speaking of uncertainty, we currently shrink the correlations of Q̄ by 50%. This number

is similar to [Gârleanu and Pedersen, 2013] and is our reason for using it. But it is possible
to estimate the optimal amount of shrinkage intensity, δ, derived by [Ledoit and Wolf, 2004].
We could have used an estimate for δ rather than simply setting it to 50%, which might have
yielded better performance for the simple and sophisticated strategies, but this is beyond the
scope of this paper, and we leave it for future research.

We only test real-world data in our current empirical setup, i.e., historical backtesting,
which will always be a case study of a particular period for certain assets. Thus, the results
will always depend on the sample period, choice of assets, number of assets, etc. This is quite
evident in our backtesting, as the performance of the simple and sophisticated strategies vary
substantially for different asset classes. Another drawback of historical backtesting is that past
performance is not necessarily an indicator of future performance. Thus, good performance
in historical backtesting does not mean that the investment strategy will perform well in the
future. Another way to test performance is to use Monte Carlo simulation. We could have used
simulated returns from some distribution to allow us to change the data generating process of
the returns and investigate how this impacts our results and whether the dynamic strategies
are robust to changes to the data generating process. However, we will leave Monte Carlo
approaches to future research.

Another point of valid critique is why we use ETFs when an institutional investor can feas-
ibly replicate the index themselves and avoid the administration fees of the ETFs. While this
will most likely be true for institutional investors, it would be computationally highly challen-
ging to estimate multivariate GARCH models for hundreds or thousands of assets with our
current setup. The curse of dimensionality would make accurately estimating the covariance
of these thousands of assets difficult with the amount of data available. Therefore, modeling
the individual assets that compromise the ETFs we use is beyond the scope of this paper but
could be a possible benefit to the investor with more diverse investment opportunities, i.e.,
increasing the investor’s feasible set.

Lastly, we model an investor facing quadratic transaction costs similar to [Gârleanu and
Pedersen, 2013]. While these seem the best choice for large institutional investors, proportional
transaction costs might be better for smaller investors. [Mei et al., 2016] considers a version
of [Gârleanu and Pedersen, 2013]’s model with proportional transaction costs. As such, this
change is not new to the literature, and thus, sticking more closely to the model made by
[Gârleanu and Pedersen, 2013] made comparisons easier. We only use the median value of
γD of all the assets rather than the individual asset calibrations. Using the individual values
would be more realistic but would also add an extra dimension that would make interpretation
more difficult. Sticking to the setup of [Gârleanu and Pedersen, 2013] also allows easier
comparisons.
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10 Conclusion

This thesis derives optimal multi-period dynamic minimum variance trading strategies for
an investor that either ignores (simple strategy) or adjusts for quadratic transaction costs
(sophisticated strategy). We use multivariate DCC GARCH models to forecast the conditional
covariance for both strategies. These optimal strategies are what we set out to find in our
research question. The simple strategy has a closed-form solution, while the sophisticated
strategy requires numerically solving the coefficient matrices. Additionally, the solution to the
sophisticated strategy is slightly incomplete as it requires numerically imposing the weights
to sum to 1.

The two solutions have simple dynamics. In the simple strategy, the investor ignores trans-
action costs and completely rebalances to the new minimum variance portfolio each period.
Thus, the investor responds immediately to shocks with the convergence speed depending
on the exact specification of the DCC MGARCH model. In the sophisticated strategy, the
investor partially rebalances the portfolio toward an aim portfolio, which closely resembles
the next period’s minimum variance portfolio. The amount of rebalancing towards the aim
depends on transaction costs; the higher the transaction costs, the lower the amount of trading.

We backtest the two strategies for 1.000 trading days (4 calendar years) using 11 different
EFTs from different sections, regions, and assets types. In terms of gross returns, we find
that the simple strategy achieves a lower standard deviation and a higher Sharpe ratio when
benchmarked against a naive Equal-weight and a Buy-and-hold strategy. Of the three volatility
models tested, the GARCH(1,1) fares best as it slightly outperforms the GJR-GARCH(1,1)
and ARCH(1). However, we find abysmal performance in net returns (after transaction costs)
as the investor trades heavily, especially for the simple ARCH(1). Large amounts of trading are
very costly given quadratic transaction costs. We calibrate the transaction cost parameter,
γD, to match empirical transaction costs using a result from [Robert et al., 2012]. Using
the calibrated γD in the sophisticated strategy barely improves the performance over the
simple strategy in net returns. The interpretation is that the investor believes rebalancing
almost completely toward the aim portfolio reduces the expected future portfolio risk to such
a degree that the high rebalancing is worth the high transaction costs. Increasing the ex-
ante (or perceived) transaction costs, γ̃D, increases net performance significantly. When the
investor perceives trading as more costly, the investor decreases trading volumes. Applying
optimal γ̃D values to the sophisticated GARCH(1,1) and GJR-GARCH(1,1), we obtain lower
standard deviations than the Equal-weight and Buy-and-hold strategies with higher net Sharpe
ratios than the Equal-weight but lower than the But-and-hold. Considering only gold and oil
futures like [Gârleanu and Pedersen, 2013], we find similar net Sharpe ratios, and our dynamic
strategies outperform the Equal-weight and Buy-and-hold benchmark across all measures when
using the optimal γ̃D.

Our contribution to portfolio theory is thus the foundations of a framework for solving
dynamic multi-period with an investor seeking to minimize portfolio variance with quadratic
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transaction costs and incorporating time-varying covariance estimates model by multivariate
GARCH models. Future research with offset in this thesis should first and foremost focus
on deriving a complete theoretical solution to the sophisticated strategy by finding optimal
weights that sum to 1. Additionally, one could find an analytical solution or an approxima-
tion to the coefficient matrix, Avv. Afterward, one could incorporate more complex univariate
GARCH models like the Realized GARCH or EGARCH for better covariance forecasts. Fur-
thermore, it might be possible to combine the focus of [Gârleanu and Pedersen, 2013] on
mean prediction models and our emphasis on covariance prediction into a complete model
that incorporates both mean and covariance predictions.
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A Appendix

A.1 Student’s t-distribution

Consider Z and Y as an independent random variable, where Z ∼ N (0, 1) and Y ∼ χ2(ν).
The Student’s t random variable can be defined by

X =
Z√
Y/ν

with the probability density function (pdf) given as

f(x|ν) =

Γ( v+1
2

)

Γ( ν
2

)√
νπ

(
1 +

x2

ν

)−ν+1
2

with ν degrees of freedom, which determines the fatness of the tails and the number of moments
which are finite as such ν > 2 for the variance to be finite and Γ(·) is the Gamma function.
Note that for ν → ∞, the student t distribution converges to a normal distribution (See [Li
and Nadarajah, 2020] for more).

This distribution is a special case of the multivariate Student’s t-distribution. Consider
yet again Z and Y now as independent random vectors, where Z is a multivariate standard
normal and Y ∼ χ2(ν). The multivariate Student’s t random variable can be defined by

X =
Z√
Y/ν

with the multivariate probability density function (pdf) given as

f(x|ν) =
Γ
(
(ν + p)/2

)
Γ
(
ν/2
)
νpp/2πp/2|Σ|1/2

(
1 +

1

v
x′Σ−1x

)−(v+p)/2

Note here that Σ is the covariance matrix of the multivariate normal distribution. ν is degrees
of freedom that determine the fatness of the tails and the number of finite moments. p is the
number of dimensions.

A.2 Non-Central Student’s t-distribution

Consider Z and Y as independent random variable, where Z ∼ N (0, 1) and Y ∼ χ2(ν). The
non-central Student’s t random variable with non-centrality parameter nc can be defined by

X =
Z + nc√
Y/ν

with the probability density function (pdf) given as

f(x|ν, nc) =
e−nc

2/2νν/2√
π(ν + x2)(ν+1)/2Γ(ν/2)

+∞∑
k=0

Γ
(
v+k+1

2

)
nck2k/2xk

Γ(k + 1)(ν + x2)k/2
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with Ix(a, b) being the incomplete beta function ratio. Where nc dictates which direction the
distribution is moved. ν is the degrees of freedom that determine the fatness of the tails and
the number of finite moments such ν > 2 for the variance to be finite and Γ(·) is the Gamma
function. Note that for ν →∞, the student t distribution converges to a non-central normal
distribution (See [Li and Nadarajah, 2020] for more).

A.3 Multivariate GARCH models in Portfolio theory

Taking first order conditions with respect to the weight, vt

∂L
∂vt

= Ωt+1|tvt − λt1 = 0

Solving for vt yields
λ1 = Ωt+1|tvt ⇔ vtΩt+1|t1λt

The constraint requires that v′t1 = 1, which can be used to solve for the Lagrangian multiplier
λt

1 =v′t1 = 1′vt

1 =1′Ω−1
t+1|t1λt

λt =
1

1′Ω−1
t+1|t1

Now, we insert the expression into the weights vt

vt = Ω−1
t+1|t1λt = Ω−1

t+1|t1
1

1′Ω−1
t+1|t1

vt =
Ω−1
t+1|t1

1′Ω−1
t+1|t1

= vMVP
t

A.4 The sophisticated strategy (Adjusting for transaction costs)

We evaluate the conditional expectation of the guessed value function with Et[Ωt+1] = Ωt+1|t

Et[V (vt)] =
1

2
v′tAvvvt − v′tAv11−

1

2
1′A111

Inserting this into our value function in equation (31) yields the problem:

V (vt−1) = min
vt

[
1

2
(vt − vt−1)′Λt(vt − vt−1) + (1− ρ)

(
1

2
v′tΩt+1|tvt +

1

2
v′tAvvvt

−v′tAv11−
1

2
1′A111

)]
− λt(v′t1− 1)
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We redefine terms and see the investor minimizes the following quadratic problem:

V (vt−1) = min
vt

[
(1− ρ)

(
1

2
v′tJtvt − v′tjt − dt

)]
− λt(v′t1− 1) (37)

with

Jt = Ωt+1|t + Avv + Λ̄t

jt = Λ̄tvt−1 + Av11

dt =
1

2
v′t−1Λ̄tvt−1 +

1

2
1′A111

Where we define Λ̄t = (1− ρ)−1Λt. Minimize the reformulated problem wrt. to vt:

∂V (vt−1)

∂vt
= (1− ρ)(Jtvt − jt)− λt1 = 0⇔ (1− ρ)Jtvt = (1− ρ)jt + λt1⇔

vt = J−1
t (jt + (1− ρ)−1λt1)

Solve for the Lagrangian multiplier λt using the constraint v′t1 = 1

1 = 1′
[
J−1
t (jt + (1− ρ)−1λt1)

]
= 1′J−1

t jt + 1′J−1
t 1(1− ρ)−1λt ⇔ λt =

1− 1′J−1
t jt

(1− ρ)−11′J−1
t 1

Inserting the Lagrangian multiplier back into the problem yields

vt = J−1
t (jt + (1− ρ)−1λt1) = J−1

t

(
jt +

1− 1′J−1
t jt

1′J−1
t 1

1
)

Detour a bit to check that the weights sum to one by inserting vt into the constraint, v′t1 =

1′vt = 1

1 = 1′
[
J−1
t

(
jt +

1− 1′J−1
t jt

1′J−1
t 1

1
)]

= 1′J−1
t jt +

1′J−1
t 1− 1′J−1

t 11′J−1
t jt

1′J−1
t 1

1 = 1′J−1
t jt +

1′J−1
t 1− 1′J−1

t 11′J−1
t jt

1′J−1
t 1

= 1′J−1
t jt + 1− 1′J−1

t jt = 1

Recall the rewritten version of the quadratic problem V (vt−1) in equation (37) and define
λ̄t = (1 − ρ)−1λt, then we insert the solution of vt into equation 37 ( Ignore λt for the time
being)

V (vt−1) = (1− ρ)

{
1

2

[
J−1
t (jt + λ̄t1)

]′
Jt
[
J−1
t (jt + λ̄t1)

]
−
[
J−1
t (jt + λ̄t1)

]′
jt − dt

}
− λt(v′t1− 1)

= (1− ρ)

{
1

2

[
J−1
t (jt + λ̄t1)

]′
(jt + λ̄t1)−

[
J−1
t (jt + λ̄t1)

]′
jt − dt

}
− λt(v′t1− 1)

= (1− ρ)

{[
J−1
t (jt + λ̄t1)

]′[1
2

(jt + λ̄t1)− jt
]
− dt

}
− λt(v′t1− 1)

= (1− ρ)

{[
J−1
t (jt + λ̄t1)

]′[1
2

(λ̄t1− jt)
]
− dt

}
− λt(v′t1− 1)
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All elements of Jt can be chosen as symmetric and because a sum of symmetric matrices is
also symmetric Jt is symmetric, meaning (J−1

t )′ = J−1
t .

V (vt−1) = (1− ρ)

{
1

2
(jt + λ̄t1)′J−1

t

[
λ̄t1− jt

]
− dt

}
− λt(v′t1− 1)

= (1− ρ)

{
1

2
(λ̄t1)′J−1

t (λ̄t1)− 1

2
j′tJ
−1
t jt +

1

2
j′tJ
−1
t (λ̄t1)− 1

2
(λ̄t1)′J−1

t jt − dt
}
− λt(v′t1− 1)

= (1− ρ)

{
1

2
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t (λ̄t1)− 1

2
j′tJ
−1
t jt +

1

2
j′tJ
−1
t (λ̄t1)− 1

2
j′tJ
−1
t (λ̄t1)− dt

}
− λt(v′t1− 1)

Now insert for vt in the constraint λt(v′t1− 1)

V (vt−1) = (1− ρ)

{
1

2
(λ̄t1)′J−1

t (λ̄t1)− 1

2
j′tJ
−1
t jt − dt

}
− λt([J−1

t (jt + λ̄t1)]′1− 1)

= (1− ρ)

{
1

2
(λ̄t1)′J−1

t (λ̄t1)− 1

2
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−1
t jt − dt − λ̄t(j′tJ−1
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}
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2
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}
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}
Now, insert for λ̄t

V (vt−1) = (1− ρ)
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(1− ρ)−11′J−1
t 1

}
= (1− ρ)

{
− 1

2

(
1− 1′J−1

t jt

1′J−1
t 1

1
)′
J−1
t

(
1− 1′J−1

t jt

1′J−1
t 1

1
)
− 1

2
j′tJ
−1
t jt − dt

− 1− 1′J−1
t jt

1′J−1
t 1

j′tJ
−1
t 1 +

1− 1′J−1
t jt

1′J−1
t 1

}
= (1− ρ)

{[
1− j′tJ−1

t 1− 1

2

(
1− 1′J−1

t jt

1′J−1
t 1

1
)′
J−1
t 1

](
1− 1′J−1

t jt

1′J−1
t 1

)
− 1

2
j′tJ
−1
t jt − dt

}
= (1− ρ)

{[
1− j′tJ−1

t 1− 1

2

1− 1′J−1
t jt

1′J−1
t 1

1′J−1
t 1

](
1− 1′J−1

t jt

1′J−1
t 1

)
− 1

2
j′tJ
−1
t jt − dt

}
notice that λt = (1− 1′J−1

t jt)/(1′J−1
t 1) is a scalar such that (λt1)′ = λt1′

V (vt−1) = (1− ρ)

{[
1− j′tJ−1

t 1− 1

2
+

1

2
1′J−1

t jt

](
1− 1′J−1

t jt

1′J−1
t 1

)
− 1

2
j′tJ
−1
t jt − dt

}
= (1− ρ)

{[
1

2
− 1

2
1′J−1

t jt

](
1− 1′J−1

t jt

1′J−1
t 1

)
− 1

2
j′tJ
−1
t jt − dt

}
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now, we insert for jt and dt

V (vt−1) = (1− ρ)

{[
1

2
− 1

2
1′J−1

t [Λ̄tvt−1 + Av11]

](
1− 1′J−1

t [Λ̄tvt−1 + Av11]

1′J−1
t 1

)
− 1

2
[Λ̄tvt−1 + Av11]′J−1

t [Λ̄tvt−1 + Av11]− 1

2
v′t−1Λ̄tvt−1 −

1

2
1′A111

}
= (1− ρ)

{[
1

2
− 1

2
1′J−1

t [Λ̄tvt−1 + Av11]

](
1− 1′J−1

t [Λ̄tvt−1 + Av11]

1′J−1
t 1

)
− 1

2
v′t−1Λ̄tJ

−1
t Λ̄tvt−1 −

1

2
1′Av1J

−1
t Av11− v′t−1Λ̄J−1

t Av11−
1

2
v′t−1Λ̄tvt−1 −

1

2
1′A111

}
= (1− ρ)

1

2

{[
1− 1′J−1

t [Λ̄tvt−1 + Av11]

](
1− 1′J−1

t [Λ̄tvt−1 + Av11]

1′J−1
t 1︸ ︷︷ ︸

(I)

)

− v′t−1(Λ̄tJ
−1
t Λ̄t + Λ̄t)vt−1 − 1′(Av1J

−1
t Av1 + A11)1− 2v′t−1Λ̄J−1

t Av11︸ ︷︷ ︸
(II)

}

Consider (I)

1− 1′J−1
t [Λ̄tvt−1 + Av11]

1′J−1
t 1

− 1′J−1
t [Λ̄tvt−1 + Av11]

1− 1′J−1
t [Λ̄tvt−1 + Av11]

1′J−1
t 1

=
1

1′J−1
t 1
− 2

1′J−1
t [Λ̄tvt−1 + Av11]

1′J−1
t 1︸ ︷︷ ︸

(III)

+1′J−1
t [Λ̄tvt−1 + Av11]

(
1′J−1

t [Λ̄tvt−1 + Av11]

1′J−1
t 1

)
︸ ︷︷ ︸

(IV)

Starting with (III)

=
1

1′J−1
t 1
− 2

1′J−1
t [Λ̄tvt−1 + Av11]

1′J−1
t 1

=
1

1′J−1
t 1
− 2

1′J−1
t Λ̄tvt−1

1′J−1
t 1

− 2
1′J−1

t Av11
1′J−1

t 1

= 1′
J−1
t

(1′J−1
t 1)(1′J−1

t 1)
1− v′t−1

2Λ̄tJ
−1
t

1′J−1
t 1

1− 1′
2J−1

t Av1

1′J−1
t 1

1

Continuing with (IV)

= 1′J−1
t [Λ̄tvt−1 + Av11]

(
1′J−1

t [Λ̄tvt−1 + Av11]

1′J−1
t 1

)
= 1′J−1

t [Λ̄tvt−1 + Av11]
1

1′J−1
t 1

[Λ̄tvt−1 + Av11]′J−1
t 1

= 1′J−1
t Λ̄tvt−1

1

1′J−1
t 1

[Λ̄tvt−1]′J−1
t 1 + 1′J−1

t Av11
1

1′J−1
t 1

[Av11]′J−1
t 1

+ 1′J−1
t Λ̄tvt−1

2

1′J−1
t 1

[Av11]′J−1
t 1

= v′t−1Λ̄tJ
−1
t 1

1

1′J−1
t 1

1′J−1
t Λ̄tvt−1 + 1′J−1

t Av11
1

1′J−1
t 1

[Av11]′J−1
t 1

+ v′t−1Λ̄tJ
−1
t 1

2

1′J−1
t 1

1′J−1
t Av11
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Now insert for (III) and (IV) into (I)

= 1′
J−1
t

(1′J−1
t 1)(1′J−1

t 1)
1− v′t−1

2Λ̄tJ
−1
t

1′J−1
t 1

1− 1′
2J−1

t Av1

1′J−1
t 1

1 + v′t−1Λ̄tJ
−1
t 1

1

1′J−1
t 1

1′J−1
t Λ̄tvt−1

+ 1′J−1
t Av11

1

1′J−1
t 1

[Av11]′J−1
t 1 + v′t−1Λ̄tJ

−1
t 1

2

1′J−1
t 1

1′J−1
t Av11

= v′t−1

(
Λ̄tJ

−1
t 1

1

1′J−1
t 1

1′J−1
t Λ̄t

)
vt−1 − v′t−1

(
2Λ̄tJ

−1
t

1′J−1
t 1

[
1− 11′J−1

t Av1

])
1

+ 1′
(
J−1
t Av11

1

1′J−1
t 1

[Av11]′J−1
t +

J−1
t

(1′J−1
t 1)(1′J−1

t 1)
− 2J−1

t Av1

1′J−1
t 1

)
1

Returning to V (vt−1) with the calculated expressions for (I) and (II)

V (vt−1) = (1− ρ)
1

2

{
−v′t−1(Λ̄tJ

−1
t Λ̄t + Λ̄t)vt−1 − 1′(Av1J

−1
t Av1 + A11)1− 2v′t−1Λ̄tJ

−1
t Av11︸ ︷︷ ︸

(II)

+ v′t−1

(
Λ̄tJ

−1
t 1

1

1′J−1
t 1

1′J−1
t Λ̄t

)
vt−1 − v′t−1

(
2Λ̄tJ

−1
t

1′J−1
t 1

[
1− 11′J−1

t Av1

])
1︸ ︷︷ ︸

(I)

+ 1′
(
Av1J

−1
t 1

1

1′J−1
t 1

1′J−1
t Av1 +

J−1
t

(1′J−1
t 1)(1′J−1

t 1)
− 2J−1

t Av1

1′J−1
t 1

)
1︸ ︷︷ ︸

(I) continued

}

Combining terms with v′t−1

(
·
)
vt−1, v′t−1

(
·
)
1 and 1′

(
·
)
1

V (vt−1) = (1− ρ)

{
1

2
v′t−1

(
Λ̄tJ

−1
t 1

1

1′J−1
t 1

1′J−1
t Λ̄t − Λ̄tJ

−1
t Λ̄t − Λ̄t︸ ︷︷ ︸

Avv

)
vt−1

− v′t−1

(
Λ̄tJ

−1
t

1′J−1
t 1

[
1− 11′J−1

t Av1

]
+ Λ̄tJ

−1
t Av1

)
︸ ︷︷ ︸

Av1

1

+
1

2
1′
(
Av1J

−1
t 1

1

1′J−1
t 1

1′J−1
t Av1 +

J−1
t

(1′J−1
t 1)(1′J−1

t 1)
− 2J−1

t Av1

1′J−1
t 1

− Av1J
−1
t Av1 − A11︸ ︷︷ ︸

A11

)
1
}

Compare this to the guessed value function

V (vt−1) =
1

2
v′tAvvvt − v′tAv11−

1

2
1′A111

We see that this is indeed a solution. This implies that the following restriction on the
coefficient matrices must hold

(1− ρ)−1Avv = Λ̄tJ
−1
t 1

1

1′J−1
t 1

1′J−1
t Λ̄t − Λ̄tJ

−1
t Λ̄t − Λ̄t

(1− ρ)−1Av1 =
Λ̄tJ

−1
t

1′J−1
t 1

[
1− 11′J−1

t Av1

]
+ Λ̄tJ

−1
t Av1

(1− ρ)−1A11 = Av1J
−1
t 1

1

1′J−1
t 1

1′J−1
t Av1 +

J−1
t

(1′J−1
t 1)(1′J−1

t 1)
− 2J−1

t Av1

1′J−1
t 1

− Av1J
−1
t Av1 − A11
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Now, we proceed to solve for the coefficient matrices Avv, Av1 and A11. Starting with Avv and
begin with inserting Jt

(1− ρ)−1Avv =

Λ̄t

[
Ωt+1|t + Avv + Λ̄t

]−11
1

1′
[
Ωt+1|t + Avv + Λ̄t

]−11
1′
[
Ωt+1|t + Avv + Λ̄t

]−1
Λ̄t

−Λ̄t

[
Ωt+1|t + Avv + Λ̄t

]−1
Λ̄t + Λ̄t

Here, we face a major problem because we are not able to solve for Avv analytically as we
cannot see a way to to isolate Avv in 1′

[
Ωt+1|t + Avv + Λ̄t

]−11. We see only two approaches.
Either one would have to take the inverse of 1 and 1′, which is not defined as these are not
square matrices. Even more exotic inverses like a left- and right-inverse requires either full
column or row rank, which a matrix of 1’s does not have. Alternatively, one could take the
inverse of the entire scalar 1′

[
Ωt+1|t + Avv + Λ̄t

]−11 which simply moves the problem to one
of the other terms. We, therefore, see no way to solve this problem analytically.

However, we can numerically solve for Avv by using the two sides of the equation (LHS
and RHS, respectively). We define the objective function as the sum of squared differences
element-wise between the matrix LHSl,j(Avv) and RHSl,j(Avv). Denote row as l and column
as j

arg min
Avv

N∑
l=1

N∑
j=1

(
LHSl,j(Avv)− RHSl,j(Avv)

)2 (38)

We implement the minimization problem in Python using the Scipy package of [Virtanen et al.,
2020], with the SLSQP solver. We constrain Avv to be symmetric to fulfill the requirements
from our derivations. We achieve numerical convergence after about 20 iterations on average.

In contrast to Avv, it is possible to solve for Av1 analytically

(1− ρ)−1Av1 =
Λ̄tJ

−1
t

1′J−1
t 1

[
1− 11′J−1

t Av1

]
+ Λ̄J−1

t Av1

(1− ρ)−1Av1 − Λ̄J−1
t Av1 +

Λ̄tJ
−1
t

1′J−1
t 1

11′J−1
t Av1 =

Λ̄tJ
−1
t

1′J−1
t 1(

(1− ρ)−1 − Λ̄J−1
t +

Λ̄tJ
−1
t

1′J−1
t 1

11′J−1
t

)
Av1 =

Λ̄tJ
−1
t

1′J−1
t 1

resulting in

Av1 =

(
(1− ρ)−1 − Λ̄tJ

−1
t +

Λ̄tJ
−1
t

1′J−1
t 1

11′J−1
t

)−1
Λ̄tJ

−1
t

1′J−1
t 1

Now insert for Jt and Λ̄t =
Ωt+1|tγD

1−ρ

Av1 =

(
(1− ρ)−1 −

Ωt+1|tγD
1−ρ [Ωt+1|t + Avv +

Ωt+1|tγD
1−ρ ]−1

1′[Ωt+1|t + Avv +
Ωt+1|tγD

1−ρ 1
1′
[
Ωt+1|t + Avv +

Ωt+1|tγD
1− ρ

]−1

+
Ωt+1|tγD

1− ρ

[
Ωt+1|t + Avv +

Ωt+1|tγD
1− ρ

]−1)−1 Ωt+1|tγD
1−ρ [Ωt+1|t + Avv +

Ωt+1|tγD
1−ρ ]−1

1′[Ωt+1|t + Avv +
Ωt+1|tγD

1−ρ ]−11
(39)

page 74 of 85



Dynamic Trading with a GARCH volatility model

Note while we can analytically solve for Av1, the solution is not analytical as it uses Avv, which
we solved for numerically, which causes Av1 to be a numerical solution.
Lastly, we solve for A11 which, similarly to Av1 can be solved analytically but requires both
Avv and Av1 and is thus not an analytical solution but numerical.

(1− ρ)−1A11 =
1

1′J−1
t 1

[
Av1J

−1
t 11′J−1

t Av1 +
J−1
t

1′J−1
t 1
− 2J−1

t Av1

]
− Av1J

−1
t Av1 − A11(

1 +
1

1− ρ

)
A11 =

1

1′J−1
t 1

[
Av1J

−1
t 11′J−1

t Av1 +
J−1
t

1′J−1
t 1
− 2J−1

t Av1

]
− Av1J

−1
t Av1(

1− ρ+ 1

1− ρ

)
A11 =

1

1′J−1
t 1

[
Av1J

−1
t 11′J−1

t Av1 +
J−1
t

1′J−1
t 1
− 2J−1

t Av1

]
− Av1J

−1
t Av1

Multiplying the term on A11 over yields

A11 =

(
1− ρ+ 1

1− ρ

)−1{
1

1′J−1
t 1

[
Av1J

−1
t 11′J−1

t Av1 +
J−1
t

1′J−1
t 1
− 2J−1

t Av1

]
− Av1J

−1
t Av1

}
A11 =

(
1− ρ

1− ρ+ 1

){
1

1′J−1
t 1

[
Av1J

−1
t 11′J−1

t Av1 +
J−1
t

1′J−1
t 1
− 2J−1

t Av1

]
− Av1J

−1
t Av1

}
Now insert for Jt and Λ̄t =

Ωt+1|tγD
1−ρ

A11 =

(
1− ρ

1− ρ+ 1

){
1

1′[Ωt+1|t + Avv +
Ωt+1|tγD

1−ρ ]−11

(
[Ωt+1|t + Avv +

Ωt+1|tγD
1−ρ ]−1

1′[Ωt+1|t + Avv +
Ωt+1|tγD

1−ρ ]−11

+ Av1

[
Ωt+1|t + Avv +

Ωt+1|tγD
1− ρ

]−1

11′
[
Ωt+1|t + Avv +

Ωt+1|tγD
1− ρ

]−1

Av1

− 2

[
Ωt+1|t + Avv +

Ωt+1|tγD
1− ρ

]−1

Av1

)
− Av1

[
Ωt+1|t + Avv +

Ωt+1|tγD
1− ρ

]−1

Av1

}
(40)
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A.5 Empirical

A.5.1 MGARCH model estimates

Table 9: Estimates of a DCC MGARCH(1,1) with univariate ARCH(1) - tν error terms

Univariate GARCH

Asset µ ω α ν

Emerging Markets (EEM) 0.062
(0.026)

2.674
(0.26)

0.408
(0.074)

3.171
(0.196)

S&P 500 (IVV) 0.089
(0.014)

1.482
(0.275)

0.816
(0.182)

2.518
(0.139)

Europe (IEV) 0.073
(0.021)

2.072
(0.246)

0.576
(0.102)

2.89
(0.163)

Global Tech (IXN) 0.107
(0.018)

1.599
(0.176)

0.418
(0.076)

2.901
(0.166)

Real estate (IYR) 0.108
(0.019)

1.399
(0.132)

0.999
(0.09)

2.95
(0.107)

Global financials (IXG) 0.078
(0.021)

2.557
(0.374)

0.903
(0.16)

2.653
(0.143)

Global Industrials (EXI) 0.087
(0.018)

1.547
(0.179)

0.636
(0.108)

2.93
(0.176)

Gold (GC=F) 0.042
(0.019)

1.408
(0.102)

0.112
(0.029)

3.58
(0.274)

Brent crude oil (BZ=F) 0.016
(0.031)

4.192
(0.442)

0.467
(0.079)

3.034
(0.206)

High-yield bonds (HYG) 0.042
(0.006)

0.222
(0.025)

0.999
(0.106)

2.756
(0.1)

20+ year treasuries (TLT) 0.036
(0.0006)

0.738
(0.033)

0.994
(0.0015)

4.00
(0.087)

Multivariate GARCH

a b ν

Scalar-BEKK(1,1) 0.004
(0.003)

0.973
(0.003)

9.465
(0.349)

Note: Estimated via MLE using data from January 1st 2008 to October 11th 2017. Robust standard
errors in (·).
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Table 10: Estimates of a DCC MGARCH(1,1) with univariate GJR-GARCH(1,1) - tν error
terms

Univariate GARCH

Asset µ ω α β κ ν

Emerging Markets (EEM) 0.021
(0.025)

0.016
(0.009)

0.001
(0.012)

0.933
(0.02)

0.116
(0.021)

10.096
(1.796)

S&P 500 (IVV) 0.061
(0.013)

0.018
(0.004)

0.000
(0.015)

0.859
(0.021)

0.268
(0.045)

5.587
(0.631)

Europe (IEV) 0.044
(0.019)

0.019
(0.008)

0.019
(0.011)

0.900
(0.02)

0.146
(0.034)

5.978
(0.708)

Global Tech (IXN) 0.082
(0.017)

0.021
(0.007)

0.000
(0.010)

0.902
(0.019)

0.161
(0.033)

6.143
(0.738)

Real estate (IYR) 0.068
(0.018)

0.011
(0.004)

0.053
(0.018)

0.896
(0.02)

0.091
(0.024)

7.764
(1.056)

Global financials (IXG) 0.049
(0.02)

0.019
(0.008)

0.019
(0.012)

0.903
(0.021)

0.139
(0.031)

6.75
(0.875)

Global Industrials (EXI) 0.052
(0.017)

0.01
(0.006)

0.000
(0.019)

0.923
(0.033)

0.136
(0.033)

7.913
(1.26)

Gold (GC=F) 0.037
(0.018)

0.007
(0.002)

0.038
(0.006)

0.961
(0.001)

−0.008
(0.010)

4.692
(0.456)

Brent crude oil (BZ=F) 0.000
(0.029)

0.008
(0.004)

0.018
(0.005)

0.956
(0.001)

0.049
(0.011)

6.091
(0.718)

High-yield bonds (HYG) 0.031
(0.006)

0.003
(0.001)

0.041
(0.014)

0.861
(0.023)

0.192
(0.032)

4.84
(0.436)

20+ year treasuries (TLT) 0.037
(0.017)

0.006
(0.002)

0.055
(0.007)

0.953
(0.002)

−0.03
(0.011)

16.048
(5.143)

Multivariate GARCH

a b ν

Scalar-BEKK(1,1) 0.0149
(0.001)

0.972
(0.003)

10.04
(0.469)

Note: Estimated via MLE using data from January 1st 2008 to October 11th 2017. Robust standard
errors in (·).
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A.5.2 Excess figures

Figure 24: Impulse response function of vMVP
t for GJR-GARCH(1,1) with a shock of 2

(a) Weights, vMVP
t (b) Volatility, σt

Figure 25: Annualized performance measures across different values of γ̃D
(a) Standard deviation, Stocks (b) Sharpe Ratio, Stocks

(c) Standard deviation, bonds (d) Sharpe Ratio, bonds
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Figure 26: Simple GJR-GARCH(1,1) portfolio weights

(a) All assets
(b) Stock ETFs

Figure 27: Weights of different sophisticated GARCH type strategies for γ̃D = 1.52e−6

(a) vMVP
t , ARCH(1) (b) vMVP

t , GARCH(1,1)

(c) vMVP
t , GJR-GARCH(1,1)
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Figure 28: Sophisticated GJR-GARCH(1,1) portfolio weights

(a) vMVP
t for γ̃D = 2.3e−5 (b) vMVP

t for γ̃D = 1e−4

Figure 29: ARCH(1) MVP weights for different γ̃D, commodities

(a) γ̃D = 1.52e−6 (b) γ̃D = 1e−4
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Figure 30: GARCH(1,1) MVP weights for different γ̃D, commodities

(a) γ̃D = 1.52e−6 (b) γ̃D = 1e−4

Figure 31: GJR-GARCH(1,1) MVP weights for different γ̃D, commodities

(a) γ̃D = 1.52e−6 (b) γ̃D = 1e−4
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A.5.3 Algorithms

The algorithms are all formulated as the general GJR-GARCH(1,1) case as the ARCH(1), and
GARCH(1,1) are special cases of it.

Algorithm 1 Optimal weights using a DCC MGARCH model without transaction costs
1: Data: Asset returns of N assets until period T . Out of sample period is [T + 1,M ]

2: Result: Array of the weights of vt of size (M − [T + 1])×N
3: Model fit:
4: Use in-sample data from period 0 to T
5: Fit a Dynamic Conditional Correlation Multivariate GARCH model based on R
6: Univariate part:
7: for Asset i ∈ N do
8: Estimate a univariate GJR-GARCH(1,1) model
9: Receive the parameters of the model αi, βi, ωi ,κi
10: Receive variables from the model, σi, εi
11: end for
12: Multivariate part:
13: Estimate a scalar BEKK GARCH(1,1) model for the pseudo correlation, Qt

14: Receive the parameters of the model a, b
15: One-period out of sample forecast of Ωt

16: while T ≤M do
17: Get variables from current period for all N assets: ε2t , σ2

t , rt

18: Vart = diag(σ1,t, σ2,t, ..., σN,t)

19: for Asset i ∈ N do
20: εi,t = ri,t − µ
21: σ2

i,t+1|t = ωi + αiε
2
i,t + βiσ

2
i,t + κiε

2
t I{εt<0}

22: end for
23: ηt = Var−1

t εt

24: Forecast Ωt+1 from Ft-measurable variables, denoted Ωt+1|t

25: Vart+1|t = diag(σ1,t+1|t, σ2,t+1|t, ..., σN,t+1|t)

26: Qt+1|t = Q̄(1− a− b) + aηtη
′
t + bQt where Q̄ = 1

T

∑T
t=1 ηtη

′
t and shrunk

27: Γt+1|t = diag(Qt+1|t)
−1/2Qt+1|tdiag(Qt+1|t)

−1/2

28: Ωt+1|t = Vart+1|tΓt+1|tVart+1|t

29: end while
30: Portfolio Optimization:
31: Initial weights are the benchmark Buy-and-hold MVP: v−1 = Σ−11

1′Σ−11

32: while T ≤M do
33: Use result from section 4.2.1, equation (28) to find the optimal weights: vt =

Ω−1
t+1|t1

1′Ω−1
t+1|t1

34: end while
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Algorithm 2 Optimal weights using a DCC MGARCH model with transaction costs
1: Data: Asset returns of N assets until period T . Out of sample period is [T + 1,M ]

2: Result: Array of the weights of vt of size (M − [T + 1])×N
3: Model fit:
4: Use in-sample data from period 0 to T
5: Fit a Dynamic Conditional Correlation Multivariate GARCH model based on R
6: Univariate part:
7: for Asset i ∈ N do
8: Estimate a univariate GJR-GARCH(1,1) model
9: Receive the parameters of the model αi, βi, ωi ,κi
10: Receive variables from the model, σi, εi
11: end for
12: Multivariate part:
13: Estimate a scalar BEKK GARCH(1,1) model for the pseudo correlation, Qt

14: Receive the parameters of the model a, b
15: One-period out of sample forecast of Ωt

16: while T ≤M do
17: Get variables from current period for all N assets: ε2t , σ2

t , rt

18: Vart = diag(σ1,t, σ2,t, ..., σN,t)

19: for Asset i ∈ N do
20: εi,t = ri,t − µ
21: σ2

i,t+1|t = ωi + αiε
2
i,t + βiσ

2
i,t + κiε

2
t I{εt<0}

22: end for
23: ηt = Var−1

t εt

24: Forecast Ωt+1 from Ft-measurable variables, denoted Ωt+1|t

25: Vart+1|t = diag(σ1,t+1|t, σ2,t+1|t, ..., σN,t+1|t)

26: Qt+1|t = Q̄(1− a− b) + aηtη
′
t + bQt where Q̄ = 1

T

∑T
t=1 ηtη

′
t and shrunk

27: Γt+1|t = diag(Qt+1|t)
−1/2Qt+1|tdiag(Qt+1|t)

−1/2

28: Ωt+1|t = Vart+1|tΓt+1|tVart+1|t

29: Calculate Avv, Av1 and A11 using equation (38), (39) and (40)
30: end while
31: Portfolio Optimization:
32: Initial weights are the benchmark Buy-and-hold MVP: v−1 = Σ−11

1′Σ−11

33: while T ≤M do
34: Find optimal weights using equation (32): vt = vt−1 + (γDΩt+1|t)

−1Avv
[
vt−1 − aimt

]
35: end while
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Algorithm 3 Calculation of transaction costs
1: Data: Out of sample returns from period [T + 1,M ] of the N assets
2: Result: Array of net return size (M − [T + 1])×N
3: Calculation:
4: while T ≤M do
5: Calculate turnover (TO) using equation (35): TOψ,t = vt − vt−1◦(1+rt)

1+v′t−1rt

6: Convert relative change in weight into number of stocks traded: ∆xi = TOiψvP
−1
i

7: Calculate the dollar transaction cost: TCψ,t = ∆xtΩt+1|tγD∆xt

8: Calculate the relative transaction cost: %TCψ,t = TCψ,t/ψv

9: Calculate net returns: r̂ψ,t = v′t−1rt −%TCψ,t

10: end while

A.5.4 Excess tables

Table 11: Annualized performance, sophisticated strategy, stocks

Strategy Std. deviation Return Sharpe ratio Transaction costs

Before transaction costs
ARCH(1) 0.2085 0.1105 0.5297
GARCH(1,1) 0.1878 0.0865 0.4609
GJR-GARCH(1,1) 0.1899 0.0884 0.4656
Equal weight 0.2082 0.1117 0.5366
Buy and hold 0.2197 0.1732 0.7882

After transaction costs γ̃D = γD = 1.52e−6

ARCH(1) 1.4366 -1.0000 -0.6961 100.00%
GARCH(1,1) 0.9056 -1.0000 -1.1042 83.362%
GJR-GARCH(1,1) 0.8124 -1.0000 -1.2309 84.315%
Equal weight 0.2083 0.0951 0.4565 1.4981%
Buy and hold 0.2197 0.1732 0.7882 0.0000%

After transaction costs γ̃D = 1.03e−4

ARCH(1) 0.2107 0.0547 0.2597 5.3285%
GARCH(1,1) 0.1995 0.0592 0.2968 2.2943%
GJR-GARCH(1,1) 0.1994 0.0577 0.2891 2.7637%

After transaction costs γ̃D = 1.03e−3

ARCH(1) 0.2100 0.1379 0.6565 2.1754%
GARCH(1,1) 0.2039 0.1050 0.5148 1.0545%
GJR-GARCH(1,1) 0.2048 0.1114 0.5443 1.2475%

Note: The actual transaction costs the investor pays is identical for each γ̃
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Table 12: Annualized performance, sophisticated strategy, bonds

Strategy Std. deviation Return Sharpe ratio Transaction costs

Before transaction costs
ARCH(1) 0.0807 0.0649 0.8047
GARCH(1,1) 0.0703 0.0508 0.7224
GJR-GARCH(1,1) 0.0777 0.0324 0.4174
Equal weight 0.0756 0.0590 0.7806
Buy and hold 0.0711 0.0538 0.7565

After transaction costs γ̃D = γD = 1.52e−6

ARCH(1) 0.3829 -0.5652 -1.4761 59.078%
GARCH(1,1) 0.8087 -1.0000 -1.2366 100.02%
GJR-GARCH(1,1) 0.8087 -1.0000 -1.2366 48.585%
Equal weight 0.0776 0.0469 0.6043 1.1341%
Buy and hold 0.0711 0.0538 0.7565 0.0000%

After transaction costs γ̃D = 1.3e−4

ARCH(1) 0.0661 0.0497 0.7506 0.0655%
GARCH(1,1) 0.0650 0.0486 0.7483 0.1112%
GJR-GARCH(1,1) 0.0641 0.0517 0.8067 0.0927%

After transaction costs γ̃D = 2.13e−4

ARCH(1) 0.0666 0.0505 0.7580 0.0251%
GARCH(1,1) 0.0652 0.0497 0.7615 0.0395%
GJR-GARCH(1,1) 0.0645 0.0512 0.7941 0.0356%

Note: The actual transaction costs the investor pays is identical for each γ̃

A.6 Python Code

All the code used for backtesting and plots is available at https://github.com/neriksen/
thesis
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