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Abstract

This paper examines whether leveraging investments (buying on margin) when young
can produce higher risk-adjusted returns over a life cycle. We use dual- and single-target
leveraged investment strategies proposed in [Ayres and Nalebuff, 2008] and compare them
to traditional all-stock and life-cycle investment strategies. We use a Monte Carlo ap-
proach to simulate market returns from different data-generating processes. Our focus is
on returns drawn from a constant mean GJR-GARCH(1,1) model with skewed Student’s
t-distributed error terms to closely match the characteristics of empirical market returns.

We find that leveraged dual- and single-target strategies yield higher terminal wealth
than unleveraged strategies in 95% of simulations. Additionally, the dual- and single-
target strategies outperform traditional strategies on a risk-adjusted basis. This is evident
from their higher average Sharpe ratios and lower relative risk premiums compared to an
all-stock strategy. However, we find that 1.12% of investors default during our baseline
investment horizon of 50 years, although this result is highly dependent on the data
generating process chosen. Finally, the dual- and single-target strategies achieve higher
temporal diversification by evening out the investor’s exposure to the stock market over
time. Combining these results, we recommend a dual or single-target strategy to young
risk-averse Danish investors. Even if investors do not follow our preferred strategies,
there is at least a benefit to investing early in life to obtain temporal diversification.
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1 Executive Summary

Many investment strategies employ leverage to increase exposure to the stock market. Risk-
neutral or even risk-seeking investors often use leverage to improve the expected returns of
their portfolios. We explore the use of leverage as a tool for evening out exposure to the stock
market and reducing risk over a life cycle.
To do this, we build a theoretical framework where risk-averse investors, characterized by a
constant relative risk aversion (CRRA) utility function, maximizes their expected utility from
wealth with respect to their allocation, π, into a risky asset. This problem has a well-known
solution in the Merton fraction, where investors invest a constant fraction of savings into the
risky asset.

π∗ =
1

γ

µy − ν − ri
σ2
y

, (1)

which is independent of time and wealth and depends on risk aversion, γ and returns, µy and
variance, σ2

y of the risky asset, as well as investment cost, ν.
Investors can invest in either a risky asset always paying the riskless rate, rf , or the risky
asset, St. We simulate a risky asset generated with a GJR-GARCH(1,1) process with skewed
Student’s t-distributed error terms for better empirical fit, as well as other data generating
processes.
We test four different investment strategies. Two leveraged strategies: Dual-target and single-
target strategies and two unleveraged, more traditional strategies: an all-stock strategy and
a life-cycle strategy. The dual- and single-target strategy leverages investments when the
investor is young until he reaches an initial set investment target. The investor then deleverages
using savings and returns of his portfolio. Once deleveraged, the investor holds the optimal
Merton-Samuelson portfolio. The all-stock strategy invests 100% of savings into stocks in
all periods. The life-cycle strategy allocates 90% of savings into stocks when young, which
linearly falls to 50% at age 65.
We evaluate the strategies using the average terminal wealth of the investor in each simulation.
We calculate risk-adjusted returns using the Sharpe ratio and the relative risk premium over
the certainty equivalent. The latter is the relative risk premium the investor demands over the
amount that makes him indifferent between a certain dollar amount and the risky investment
strategy.
We use the last 30 years of the S&P500 index as our risky asset, St, and fit the GARCH
type model using it. The risk-free rate is the 15 year average of 10-year Danish government
bond yields. We use a fixed 5% of the investors disposable income for savings, which follows
an interpolated polynomial curve based on median disposable income data from Statistics
Denmark for more realistic savings profiles.
We simulate markets for an investor with a 50-year investment horizon. The dual- and single-
target strategies handily outperform the more traditional all-stock and life-cycle investment
with 95% of simulations resulting in a higher terminal wealth. The boxplot of terminal wealth
in figure 1a shows the differences in performance with higher 25th, 50th and 75th quantiles
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of terminal wealth for the leveraged strategies. The dual- and single-target strategies differ
minimally for the baseline model but note that this will change as we change the parameters
of the baseline model.

Figure 1: Plots of terminal wealth

(a) Distribution of terminal wealth (DKKm) (b) Density of Sharpe Ratios

Note: Note that we have removed some observations with very high terminal wealth. Dotted lines on
the Sharpe ratio plot indicate mean values.

The higher terminal wealth of the dual- and single-target strategies might be the cause of
greater risk-taking. To check if this is indeed the case, we compute Sharpe ratios for all
four strategies. In table 1, we see that the mean and median Sharpe ratio of the dual- and
single-target strategies are higher than the all-stock strategy, all of which are higher than
the life-cycle strategy. This implies that the dual- and single-target strategies produce higher
returns per unit of risk taken. The distributions of Sharpe ratios of the dual- and single-target
are skewed to the left, meaning that a few investors with abysmal performance pull the mean
Sharpe ratio down. This is in contrast to the all-stock and life-cycle strategies, where we see
the opposite.
The relative risk premiums show that investors demand the smallest relative risk premium
of 50.13% over the certainty equivalent for the life-cycle strategy, thus deeming this the least
risky compared to the all-stock strategy where investors demand a 132.86% risk premium.
The dual- and single-target strategies lie between these. This shows that risk-averse investors
prefer the outcomes of the leveraged strategies compared to the all-stock strategy.
In addition to simulations, we also test the strategies using Robert Shiller’s historical market
data. From 50-year rolling window backtests, we find that the leveraged strategies would
have faired well on a risk-adjusted basis, judging by their higher Sharpe ratios compared to
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Table 1: Average and [median] Sharpe Ratios and Relative risk premiums

Dual target Single target All Stock Life cycle

Sharpe Ratio 0.161 [0.174] 0.159 [0.171] 0.152 [0.146] 0.124 [0.119]
Relative Risk Premium 102.26% 87.76% 132.86% 50.13%

the unleveraged strategies. When comparing the strategies on average terminal wealth, the
leveraged strategies only come out slightly on top. Importantly, zero investors would have
defaulted during our sample period from 1871 to 2021.
All investors using a leveraged strategy expose themselves to default risk. We define defaulting
in this setting as a case where the portfolio’s total value (cash and stocks) is negative. By
filtering out simulations where the investor defaults, we have analyzed what typically causes
defaults. It usually happens when extremely negative returns hit the investor at the point
of maximum leverage such that the investor cannot service his debt and eventually defaults.
In our strategy, 112 investors out of 10.000 default resulting in a default rate of 1.12%. This
default rate is heavily dependent on the data generating process of the returns of the stock.
If we change the process to a more conventional fitted IID Normal distribution or ’draws with
replacement,’ the default rate drops to 0%.
The dual- and single-target strategies produce higher Sharpe ratios while using leverage. One
might expect leverage to both increase volatility and average returns so that the Sharpe ratio
should be roughly constant. However, we see that the Sharpe ratio is higher for the leveraged
strategies. The higher Sharpe ratio is partially due to temporal diversification, where the
investor spreads his exposure to stocks by shifting future savings into the present. Increasing
exposure-smoothing reduces the risk of being overexposed late in life and underexposed early
in life. The dual- and single-target strategies are 40% more exposed to stocks than the all-stock
strategy in the first 15 years, a difference that slowly goes away as the investor deleverages.
The dual-target strategy is robust against increasing the margin rate, rm, with only small
drops in the 25th, 50th and 75th quantiles of terminal wealth. The single-target strategy does
far worse as its stock allocation depends on the margin rate for the entire horizon, whereas
the dual-target switches to depend on the risk-free rate. Increasing the margin rate has a
negligible effect on the default rate. When margin rates increase, the allocation in the risky
asset falls such that the default probability is roughly the same. Both strategies are viable on
both a shorter and longer investment horizon than the default 50 years with higher Sharpe
ratios for the leveraged strategies over the unleveraged strategies for all tested horizons.
Changing the data-generating process of market returns has a substantial effect on the res-
ults. In our preferred GJR-GARCH(1,1) model, the Sharpe ratio of the leveraged strategies
is higher than the unleveraged strategies. The outperformance only increases when using
more conventional simulation methods like an IID fitted normal distribution or ’draws with
replacement’ of empirical S&P 500 returns. Likewise, changing the data-generating process
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lowers the relative risk premiums for all strategies dramatically. When we use an IID process
to simulate returns, volatility clustering disappears, resulting in evenly distributed returns,
which reduces the overall risk of the strategies.
Our recommendation for a young, danish student looking to invest his savings is to use a
dual-target strategy. The dual-target strategy yields the highest mean and median terminal
wealth and the highest Sharpe ratios in our simulations, giving the highest return per unit of
risk. The leveraged strategies have a lower relative risk premium than an all-stock strategy.
This recommendation rests upon the current margin rate, the risk-free rate, and expected
average market returns, which will vary during the following decades and significantly affect
the results. Additionally, an investor considering a dual-target strategy needs to consider the
time and energy spend applying for loans and servicing debt. In any case, it is a good idea to
start investing early, if just in a standard all-stock strategy. The benefits of time diversification
are present regardless of using our leveraged strategy or not - the leveraged strategies merely
intensify them.
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2 Introduction

Optimal portfolio allocation is a field of research with potentially substantial effects on the
quality of life of everyday citizens. Due to the compounding nature of investments, retirement
wealth with an optimal investment strategy can be far greater than the retirement wealth of
a sub-par investment strategy. What constitutes an optimal investment strategy is a topic of
much debate and continuous research. The use of leverage, i.e., borrowing money to invest,
has been researched for many decades with the allure of the idea described by [Samuelson,
1969]

“..., he [an investor] can look forward to a high salary in the future; and with so
high a present discounted value of wealth, it is only prudent for him to put more
into common stocks compared to his present tangible wealth, borrowing if necessary
for the purpose.”

Leveraging investments might sound like a foreign idea. However, it is widely used in the
housing market, serving as the primary pension savings for many people. Over a life cycle, the
average investor could potentially unlock considerable diversification benefits by using leverage
to invest in other asset classes, for example, stocks.
For life cycle investment, [Merton, 1969] developed theoretical continuous time models of
varying time horizons for portfolio selections - famously computing the Merton fraction. This
constant optimally determines what fraction of savings an investor should allocate to risky
assets over a lifetime which, surprisingly, is independent of time and wealth.
[Viceira, 2001] states a version of Merton’s investment problem in discrete and finite time.
He finds that the solution to the discrete-time investment problem is identical to the original
Merton Fraction. He shows that, depending on risk aversion, some investors prefer high levels
of leveraged investment.
[Shiller, 2005] analyzes the US stock, bond, and money market from 1871 till 2004 to calculate
returns and variances to compare different investment strategies. He finds that the more
heavily invested in the equity market a given investment strategy is, the higher returns it
earns. Furthermore, an all-stock strategy also generates higher wealth in the lower quantiles,
indicating that the all-stock strategy also ensures higher returns than the other strategies,
even when market returns are not favorable.
[Ayres and Nalebuff, 2008] extends Shiller’s analysis by allowing for more than 100% stock
exposure. The authors test investment strategies involving moderate usage of leverage when
young and more conservative investments than an all-stock strategy when approaching retire-
ment.
Moreover, they explore the benefits of temporal asset diversification, which means spreading
an investor’s exposure to risky assets over time. This reduces the risk of having too little
(high) exposure when markets are favorable (unfavorable).
[Ayres and Nalebuff, 2008] device two leveraged investment strategies, a dual- and single-target
strategy. Using stock market data from 1871 till 2005, they estimate for both strategies that
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investors with isoelastic preferences should invest between 169.4% and 5.6% of their savings
in risky assets, depending on their level of risk aversion.
[Ayres and Nalebuff, 2008] also find that their strategies stochastically dominate both a life-
cycle strategy and an all-stock strategy with 90% and 17% higher average retirement savings,
respectively. Additionally, the authors explore how leverage costs and lower market returns
would affect their results and find that their results are robust against changes from their base
setup.
Their tests involve Monte Carlo simulations where returns are drawn with replacement from
Robert Shiller’s database of market returns since 1871. This is somewhat problematic as this
removes clustering of returns, a stylized fact about financial time series — more on this in the
data description section.
We apply the investment strategies suggested in [Ayres and Nalebuff, 2008] from the point of
view of a young Danish student with a particular focus on the cost and availability of leverage,
answering the question:
Does leveraging investments when young outperform other more traditional investment strategies
on a risk-adjusted basis?
To do this, we investigate is a leveraged investment strategy feasible for a young Danish stu-
dent? And if so, does our preferred leveraged investment strategy diversify exposure to equit-
ies/stocks over time and thereby reduce risk? And under what market conditions for the next
50 years would our preferred leveraged investment strategy fail?. To answer these questions
fairly, we include taxation of the strategies’ returns and interest rate tax deductions to reflect
the real wealth effects young Danish investors face. We expand the Monte Carlo simulations
of [Ayres and Nalebuff, 2008] by adding a more realistic data generating process driven by a
constant mean GJR-GARCH(1,1) model with skewed Student’s t-distributed error terms. We
also test naive methods of drawing returns from a fitted normal distribution and a skewed
Student’s t-distribution. We compare the different methods and test whether they change the
results.
To answer our research questions, we present theoretical arguments for optimal asset allocation
for an investor with isoelastic preferences. He has a finite investment horizon, and two assets
characterize the market. We test the different investment strategies in section 3. Section 4
argues for the superiority of a Student’s t-distributed GJR-GARCH(1,1) model for market
simulations over traditional methods like draws with replacement from an empirical sample or
naively drawing from a Normal or Student’s t-distribution. In section 6, we present empirical
results from the simulations and perform various robustness checks to examine the strengths
and weaknesses of different investment strategies.
We find that the dual and single-target investment strategies presented in [Ayres and Nale-
buff, 2008], outperform the traditional investment strategies with higher terminal wealth for
investors and higher Sharpe ratios using the GJR-GARCH(1,1) simulations. Additionally,
we find a default rate of 1.12% for the 50-year investment horizon. By utilizing leverage,
investors spread out their exposure to the risky asset, explaining the outperformance in the
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Sharpe ratios. Considering these results, we recommend the dual- or single-target strategies to
risk-averse, young Danish investors. Still, the practitioner should also consider the added time
and effort it would take to follow this strategy compared to an all-stock strategy. More gener-
ally our results highlight the benefits of temporal diversification, underlining the importance
of starting investing early.

3 Theoretical Section

In the following section, we develop the theoretical arguments for risk-averse investors seeking
an optimal asset allocation between a risky and a risk-less asset. Additionally, we present
a model for asset price dynamics and investment strategies. We also present risk-adjusted
measures for portfolio performance.

3.1 Utility Theory

Investors have preferences regarding investment choices, primarily affected by expected returns
and volatility. Many different utility functions model the trade-off between these two factors,
where one of the more general utility functions is the Hyperbolic Absolute Risk Aversion
(HARA) utility function given by

U(Xt) =


1−γ
γ

(
aXt
1−γ

)γ
γ > 0

ln(aXt + b) γ = 0

,

Here, investors have Linear Risk Tolerance (LRT), which these types of preferences are also
called. The special cases of this utility function are more widely used, like the Constant
Absolute Risk Aversion (CARA) utility function (exponential utility) where b = 1 and γ →
−∞. This formulation is convenient mathematically but empirically less realistic than other
special cases like the Constant Relative Risk Aversion (CRRA) utility function. With CRRA
utility, investors have isoelastic preferences ([Ingersoll, 1987], p.37-41). This is the utility
function we use to model risk-averse investors.

U(Xt) =


X1−γ
t

1−γ γ > 0

ln(Xt) γ = 0
,

where γ is the degree of constant relative risk aversion, which empirical studies put in a range
from 1 to 4 with mean 2 ([Conine et al., 2017] table 1+2).
The investor decides on allocating his wealth, Xt, with a fraction π in a risky asset, S, using
the following maximization problem as presented in [Viceira, 2001] but with a finite horizon
allowing for a closed-form solution.

max
πt

E
( T∑

t=0

δtU(Xt)

)
,
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subject to the following budget constraint

Xt+1 = (Xt + Yt − Ct)Rt+1,

where Ct is consumption in period t. In order to focus our analysis, we assume that consump-
tion Ct is chosen optimally ([Ayres and Nalebuff, 2008], p. 10). Yt is wages earned in period
t. Rt+1 is the total return on all investments given by

Rt+1 = πt(1 + µy − ν) + (1− πt)(1 + ri) for i = f,m

where µy is the expected yearly return of the stock, S, and ν is the yearly investment fees
in percent. ri are different interest rates depending on the alternative the investor has. If
the investor employs leverage, the alternative to the risky assets is the margin rate, i.e., the
interest rate paid on the debt, rm. If the investor is unleveraged, the alternative is the risk-free
rate on safe assets rf .
The optimal allocation, π∗, in the risky asset, S, is given by the Merton fraction in equation
(2) as shown by [Viceira, 2001]. Here, an investor invests a constant fraction, π, of future
savings into the risky asset, S, with this fraction being independent of time and wealth. Thus,
the optimal allocation in the risky asset, π∗, is given by

π∗ =
a− ri
γσ2

=
1

γ

µy − ν − ri
σ2
y

, (2)

where σy is the yearly volatility of the stock and a is the yearly net returns ([Merton, 1969],p
253 , equation (29’)).

3.2 Performance measurement

To compare the performance fairly, we have to measure it on a risk-adjusted basis. We
do this in two different ways. First, by calculating the relative risk premiums, ϕ, of the
individual strategies. Second, by calculating the mean monthly return and standard deviation
per strategy and from this calculating the Sharpe ratio of each strategy.
The certainty equivalent is the terminal wealth WCE that an investor is just as satisfied re-
ceiving with certainty as some risky terminal wealth W .

U(WCE) = E[U(W )]

With N possible outcomes of the investment strategies all being equally likely with probability,
p = 1/N

E[U(W )] =
T∑
i=1

piU(Wi) =
1

N

T∑
i=1

U(Wi)

Inserting the CRRA utility function yields

W 1−γ
CE

1− γ
=

1

N

T∑
i=1

W 1−γ
i

1− γ
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Resulting in the certainty equivalent WCE

WCE =

(
1

N

N∑
i=1

(Wi)
1−γ
)1/(1−γ)

The certainty equivalent can only be used to compare strategies with similar means ([Ingersoll,
1987],p.37-38). Our strategies might not have this, so we use the certainty equivalent to
calculate the relative risk premium, ϕ, as

ϕ =

(
E(W )

WCE

− 1

)
· 100

The relative risk premium, ϕ, describes the relative risk premium the risk-averse investor
demands for taking the risky strategy.
Moving on to the Sharpe ratio, where we define the gross return with debt subtracted rt,s,k of
strategy s for random seed k at time t as:

rt,s,k ≡
Wt,s,k

St,s,k

Where Ws,k is wealth (equity and cash) and Ss,k is cumulative savings.
Then the average return µ̂ is:

µ̂s,k ≡
1

T

T∑
i=2

ri,s,k
ri−1,s,k

− 1

Similarly for the (sample) standard devation σ̂:

σ̂s,k ≡

√√√√ 1

T − 1

T∑
i=1

(ri,s,k − µ̂s,k)2

Then using an approach by ([Hautsch and Voigt, 2019], p. 235), the average annual Sharpe
ratio for strategy s is:

SRs ≡
1

K

K∑
k=1

µ̂s,k

σ̂s,k
√

12

The Sharpe ratio measures returns per unit of risk meaning, the higher the Sharpe ratio, the
higher the risk-adjusted return.

3.3 Investment strategy

We test four investment strategies outlined by ([Ayres and Nalebuff, 2008],p. 10+17-18). For
the leveraged strategies, the investor uses the Merton fraction in equation (2) to calculate his
optimal allocation,π(ri) for i = m, f into the risky asset. Note that rm is the margin rate, and
rf is the risk-free rate. Switching between these changes the optimal allocation. The current
empirical fraction allocated to the risky asset can either by measured against current wealth,
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CW, or some initial stock target, IST, being denoted π̂CW(ri) and π̂IST(rm) respectively. The
investor compares his calculated target, π(ri) , with these empirical fractions. The investor
sets his initial stock target, IST, as his expected cumulative future savings times the fraction of
wealth allocated to stocks, π(rm). Initially, the investor will be constrained as he only has his
current liquid savings available, so leverage is used to get closer to the initial stock target,IST.
Consider first the The single-target (three phase) strategy:

1. In phase 1, all liquid wealth is invested in the risky asset with target, π(rm) of IST, using
a 1:1 level of leverage until π̂IST(rm) = π(rm) is reached.

2. In phase 2, the investor deleverages the portfolio holding π̂IST(rm) = π(rm) constant
until the investor have no debt.

3. In phase 3, the investor holds the optimal portfolio using the Merton fraction,π̂CW(rm)

of current wealth, until retirement. Rebalancing when needed.

We illustrate the strategy with a numerical example. Consider an investor with γ = 2,
µy = 0.07, ν = 0, rm = 0.02, σy = 0.03 and expected cumulative future savings of 1,000,000
DKK. Then, using the Merton fraction, his optimal allocation is π(rm) = 83.3% in the risky
asset and IST = 833, 333. In phase 1 with savings of 500 DKK, the investor borrows 500 DKK
and invests 1,000 DKK into the risky asset. This repeats every period until IST is reached.
Then, in phase 2, the investor maintains a constant exposure of π̂IST(rm) = 83.3% while using
savings and returns to deleverage. When deleveraged, the investor progresses to phase 3 where
he holds π̂CW(rm) = 83.3% now of current wealth until retirement.
Consider now the dual-target (four phase) strategy, where phase 1 and 2 are identical to the
single-target but differs with in phase 3 and 4:

1. In phase 3, the investor invest all liquid wealth into risky assets until π̂CW(rf ) = π(rf ).
Note that π(rm) < π(rf )

2. In phase 3, the investor holds the optimal portfolio using the Merton fraction,π̂CW(rf )

of current wealth, until retirement. Rebalancing when needed.

To illustrate the dual-target strategy we continue where our previous example left of. Consider
the case where rf = 0.015 then in phase 3, the investor will change his target allocation to
π(rm) = 91.7% and once π̂CW(rf ) = 91.7% has been reached the investor progresses to phase
4 where he holds π̂CW(ri) = 91.7% now of current wealth until retirement.
Similarly to [Ayres and Nalebuff, 2008], we also test two unleveraged strategies: An all-stock
strategy, where the investor allocates 100% of liquid wealth into the risky asset until retirement.
In the 90%/50% life-cycle strategy, the investor invests 90% of liquid wealth at age 21 in the
risky asset. The fraction invested in the risky asset decreases linearly until it reaches 50% at
age 65.
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3.4 Diversification

Fundamentally diversification has two axes: asset and temporal diversification. The concept
of asset diversification is familiar to any investor and is the principle of spreading (diversifying)
investments into many different assets. This avoids the risk of a large loss due to a single asset
performing poorly ([Hull, 2018],p.525-526).
The other type of diversification, temporal diversification, spreads risk, not over assets but
over time by spreading the exposure to risky assets over a longer period. This might be
even more important than asset diversification as asset returns in the same period are often
highly correlated, whereas returns from year to year are often uncorrelated. As such, the
potential diversification benefit. Consider an asset X with returns in period t = 1, 2, ..., T

with standard deviations σ1, σ2, ..., σT . A stylized fact about returns is that the variance of
returns is correlated for short time horizons. But over longer time horizons, the variance
of returns is asymptotically independent (weakly mixing) such that corr(Xt, Xt+h) = 0 for
h → ∞ ([Taylor, 2011],p.195-196). Thus, temporal diversification is reminiscent of asset
diversification. Consider a portfolio of asset X being held by an investor in period t and t+ i.
This will have combined variance:

σ2
t,t+i = σ2

t + σ2
t+i + ρt,t+iσtσt+i

By the stylized fact of asymptotic independence ρt,t+i → 0 as i→∞ i.e. increasing the time
between the returns, such that

σ2
t + σ2

t+i + ρt,t+iσtσt+i → σ2
t + σ2

t+i

We see that, theoretically, the risk is reduced by temporally diversifying. However, temporal
diversification can be difficult to achieve as investors obviously don’t have all their future
savings available at the beginning of their life but will instead gradually built up their portfolio,
which (hopefully) will peak at some point before the investor liquidates his portfolio to consume
when retired. This gradual built-up of investments often results in the investor having low
exposure to equities early in life and heavy exposure later. His low temporal diversification
causes a higher sensitivity to negative market returns at the later stages of his investment
strategy. ([Ayres and Nalebuff, 2008],p.29-30).
This is why life-cycle investment is popular. The investor is less exposed to riskier equities
as he gradually transitions his equity positions into bonds but at the cost of lower expected
returns. The dual- and single-target strategies likewise counter uneven exposure and obtain
more temporal diversification.

3.5 Market

The market in this paper is characterized by a risk-less asset, B, which pays the risk free rate,
rf , and a risky asset, S. The returns, rt, of the risky asset, S, is the percentage change of the
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stock price, rt =
[
St/St−1− 1

]
· 100. To model its mean, we use a constant mean model. Each

period t corresponds to one day so µ is the unconditional monthly mean return of rt.

rt = µ+ εt. (1)

Several approaches exist for simulating this financial time series. A commonly used yet naive
approach is to draw εt from some identical, independently distributed (IID) distribution. This
is often a Gaussian N (0, σ2) distribution. The appealing feature of this model is that it
corresponds to the empirical version of the standard theoretical model of a market governed
by an underlying Brownian motion. However, it yields simulations with a terrible fit to the
empirical distribution of ε. We give a detailed examination of possible densities in Section 4.
Although drawing ε from an IID distribution is computationally straightforward, it yields
inaccurate simulations, as empirical studies have shown that the errors terms, εt, of financial
time series, are not independent of each other, i.e., cov(εs, εk) 6= 0 for s 6= k. Quite the
contrary, the variance of εs and εk is often highly correlated in the short run, and therefore
not IID.
We can address the problem of independence of returns by replacing the process that generates
εt with the following GJR-GARCH(1,1) that [Glosten et al., 1993] extends the variance process
with an extra effect from past negative residuals.

εt = σtzt zt ∼ skewed− tη,λ(0, 1), (2)

σ2
t = ω + αε2t−1 + βσ2

t−1 + κε2t−1I{εt−1<0} ω > 0, α, β, κ ≥ 0, (3)

where t = 1, 2, ..., T and the initial values are taken as given. I is an indicator function which
is one when the residual of the previous period, εt−1, is less than zero. Additionally zt follows
a skewed student’s t distribution, which fits the empirical distribution better than a normal
distribution1. In a GARCH type model, the conditional variance in period t is dependent on
the variance and residuals from previous periods. α states how much the variance in period t
is affected by a shock in the previous period. β is how persistent the variance is i.e. how long
these shocks last and κ is an extra effect from negative residuals as markets are more sensitive
to negative news. Many types of GARCH models exist like the EGARCH or AGARCH that
one could also use.

3.6 Simulations

Using a skewed−tη,λ GJR-GARCH(1,1) model, we simulate market returns using Monte Carlo
methods derived from a simple process.

1. Obtain Maximum Likelihood estimates of θ = (µ, ω, α, β, κ, η, λ) using the observations
in the information set for period t− 1, It−1.

1Additional information on the exact density can be found in the appendix
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2. Estimate σ2
t+1 using equation (3), θ̂ and It. Then draw zt+1 ∼ skewed − tη,λ(0, 1) and

compute rt+1 = µ+ εt+1.

3. Iterate step 2 until rt+M have been obtained.

4. Then calculate the cumulative returns during the period and multiply that with St

obtaining St+M .

Simulating markets using a fitted Normal distribution, skewed Student’s t-distribution or
draws from replacement is a far simpler process:

1. Draw rt from a Normal distribution N (µ, σ2) (or the other distribution presented) fitted
to the original data

2. Iterate step 2 until rt+M have been obtained.

3. Then calculate the cumulative returns during the period and multiply that with St

obtaining St+M .

These processes are repeated, thereby drawing different realizations of zt or rt, resulting in a
different realized market. We can thus simulate a market an arbitrary number of times - we
chose 10.000 iterations. We apply the four investment strategies to all the simulated markets
using techniques from dynamic programming in Python, see appendix for the source code.

4 Description of data

This section presents the savings profile of our representative investor along with realizations
of different market simulating methods.

4.1 Savings profile

To model a realistic lifetime disposable income profile of an average Danish investor, we use
the median disposable income for different age cohorts from Statistics Denmark. For ease of
computation, we fit a polynomial curve to the data, see figure 2, to quickly generate dispos-
able income profiles with differing time horizons, which will become helpful in the analysis
[Danmark Statistisk, 021a]2.
If we used this disposable income profile in our simulations, we would assume zero income
growth over and above what can be explained from the investor’s age. This is problematic
when we want a realistic simulation. To compensate for this, we fit a new curve with an
increase to the slope of 3% y/y. This increase matches the yearly rise in nominal disposable
income of about 3% for the last 25 years (INDKP201). This increased curve is the one we use
as the baseline disposable income profile for our simulations.

2See Appendix A.3 for the fitted polynomial
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Figure 2: Baseline lifetime monthly disposable income used in simulations

4.2 Market data

The data we use to fit our four simulation methods is a sample of daily returns of the S&P500
index from 4th of April 1991 to 1th of January 2021.
When simulating returns, the density of simulated returns must match the empirical density
of S&P500 returns as these are the best estimate we have of the future. Suppose we fail
to realistically model markets with significant crises. In that case, we could potentially bias
our result in favor of the leveraged strategies, as we expect market crises to have the most
prominent adverse effects on the leveraged strategies, potentially causing some investors to
default.
We now investigate how closely the different distributions fit the empirical data. In figure 3,
we have plotted four simulated densities against the empirical density of S&P500 returns. In
panel (c), we present draws from the normal distribution, and it is clear that the empirical
returns are non-normal. Thus, any simulated returns from a normal distribution will provide
inaccurate results in this setting.
In panel (a) and (d), draws from a skewed Student’s t-distribution are visualized, with the
only difference being the volatility structure of panel (a) being a GJR-GARCH(1,1). This,
however, should not change the distribution of the simulated returns, which fit the empirical
density much better than the normal distribution in panel (c) as panel (a) and (d) exhibits
fatter tails and excess kurtosis.
Finally, panel (b) is ’draws with replacement’ from the empirical distribution, which unsur-
prisingly fits the empirical distribution perfectly. From a pure density point of view, draws
with replacement seem like the best option, very closely followed by the skewed Student’s
t-distribution in panel (a) and (d). However, ’draws with replacement’ has certain drawbacks,
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Figure 3: Density of simulated returns and empirical density

(a) skewed− tη,λ GJR-GARCH(1,1) (b) IID draws with replacement

(c) IID Normal distribution (d) IID skewed− tη,λ-distribution

Note: The blue line in all panels are a realization of some distribution and will vary very slightly from
realization to realization

which we visualize in figure 4.
In figure 4, we see a random realization of data drawn from different distributions similar to
those in figure 3 and the actual returns of the S&P500 index for a similar length period in
panel (e).
From panel (c), it is still apparent that IID draws from a normal distribution does not match
the returns of the S&P500 index both in terms of size and the correlation. In panel (e), we
see clustering of returns, i.e., small returns tend to be followed by small returns and large
returns tend to be followed by large returns of either sign. We do not observe this in panel
(c), meaning that draws with replacement lose this important empirical feature of returns.
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Figure 4: Realization of simulations

(a) skewed− tη,λ GJR-GARCH(1,1) (b) Draws with replacement

(c) IID Normal distribution (d) IID skewed− tη,λ-distribution

(e) Empirical S&P500 returns

Note: For panel (a)-(d), the data are a realization of some distribution and will vary from realization
to realization. We have selected a realization that we thought best depicted an average realization

The same pattern holds for (b) and (d), where the size of the returns fits the actual series in
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panel (e) but the correlation of returns does not as in panels (b) and (d). Here, returns are
drawn IID and thus have no correlation, which is clearly present in panel (e) where we see
clustered returns, most visible around the financial crisis in 2008-2009 and the dot com bubble
in 2000-2001.
However, in panel (a), the magnitude of returns match panel (e), and we observe clustered
returns such that the correlation of returns is conserved. This is why we use simulated markets
drawn from a GJR-GARCH(1,1) model.
For both figure 3 and 4, one should note that all the data is just one realization of the process
(except figure 4 panel e), and the data will vary from realization to realization. The important
part is the statistical properties of the original time series and less whether it looks exactly
like the original data.

5 Parameterization

This section explores the types of leverage available to the average young investor and the
realistic taxation of capital gains. From this study of real-world restrictions, we calibrate a
baseline model.

5.1 Possible avenues for leverage

One of the difficulties of a leveraged investment strategy, especially when young, is access to
cheap and plentiful leverage. Financial institutions are often unwilling to lend a sufficient
amount of money at interest rates where a leveraged strategy is viable. However, there exist
several ways a young investor in Denmark can access cheap and somewhat plentiful leverage.
For investors taking any education, one of these ways is to apply for ’SU-lån,’ which is
government-issued loans to students, mainly to cover living expenses. Still, one can equally use
the money for investment if one’s situation allows it. These loans are paid out monthly. As of
writing, the maximum monthly rate is 3.234 DKK, which, if used every month, yields 38.808
DKK a year [Uddannelses- og Forskningsstyrelsen, 021a]. During education, the loan’s interest
rate is 4% per year and 1% after ending the education [Uddannelses- og Forskningsstyrelsen,
021b].
A second option is to use portfolio loans, which are loans issued by investment brokers directly
for leveraging investments with or without security in the assets in the portfolio. Different
banks have different terms, but the most attractive we could find was the portfolio loans
offered by the popular broker Nordnet. They offer loans with a lower interest rate, the lower
the amount borrowed, and the more diversified the portfolio is. Consider an investor with
a well-diversified portfolio. Then the investor can borrow up to 60%(40%) of the invested
amount at a 3% (2%) interest rate [Nordnet AB, 2021].
These two options seem the easiest and, more importantly, cheapest for our target practitioner
and will be the ones we apply in our simulations. Combining the 3.234 DKK per month at a
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4% interest rate and portfolio loans at a 2% or 3% interest rate should be enough to achieve a
sufficient level of leverage to obtain a 1:1 ratio. Thus, we conclude that a leveraged investment
strategy is indeed practically feasible.
Naturally, there are many different possibilities for leverage, and investors should investigate
what options are available to get the best conditions possible. Below, we have listed additional
options.
If the investor owns real estate, he can take out a mortgage, also called an Equity Home Loan.
This option is probably not relevant early in life for our target applicant, but it may later.
Mortgage debt is relatively cheap because the loan is collateralized. Many Danish mortgage
banks currently offer a mortgage with a fixed interest rate from 1% to 1,5% for a 30-year
mortgage at a favorable bond price. However, including a housing market is beyond the scope
of this paper, so we neglect this option.
Different from direct leveraging is to invest in leveraged derivatives, such as leveraged exchange-
traded funds (ETF’s). These products have the advantage that an investor doesn’t need to
borrow money outright but instead invest in an asset where some leverage ratio, typically 1:1,
is automatically applied. Though these are often cheaper than leveraging outright in terms of
the yearly costs compared to the margin rate of loans, the drawback is that leveraged ETFs
need to rebalance daily to match the targeted index using derivatives like swaps. In the long
run, this will cause tracking errors compared to the underlying index, so investors should
proceed with caution when investing in leveraged ETF for long-held positions. See [Lu et al.,
2009] for a detailed discussion of this. For these reasons, we avoid leveraged ETF’s when
building our strategy.

Table 2: Overview of types of leverage

Type Amount Interest rate Term and Conditions

SU Loan
3.234 DKK Monthly
38.808 DKK annually

4% during study
1% after study

Must be a student
Must be repaid

after ended education

Portfolio Loan
40% of invested amount
60% of invested amount

2%
3%

Max ind. asset weight 20%
Max ind. asset weight 25%

Home Equity Loan Max 80% of real estate
0.5%-1.5%

and other fees
10-30 year duration

Bank overdraft ∼50.000 DKK >5% Varies among banks

Leveraged ETF Unlimited 0.5-1% + fees
For short term investment
Not for retail investors

Notes: See the written text in section 5.1 for sources
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5.2 Taxation

We assume that the investor pays taxes on unrealized gains3 because this is how ETFs are
taxed in Denmark. Due to the high cost of domestic funds, we only consider foreign ETF’s
that track the S&P 500 index as a possible investment. These ETFs have yearly fees of around
7bps compared to around 50bps for the cheapest domestic funds. Since all ETF’s are taxed on
both realized and unrealized gains in Denmark, this is what we implement in our calculations.
In Denmark, capital gains from stocks and bonds are taxed differently. Stocks are taxed at a
special equity tax rate of 27% paid on the first 56.600 DKK and 42% for capital gains higher
than this. Bonds or interest gains are taxed as capital income and are taxed as regular income
with a marginal tax rate of 42.7%.
Additionally, capital losses are tax-deductible such that losses one year can be saved and used
as a deductible when the investor has capital gains in the future. Especially relevant for the
leveraged strategies is interest rate deductions, where 20.6% of an investor’s interest payment
is deductible. We note that interest rate payments from SU loans during studies are non-
deductible. In contrast, they are deductible after the investor has graduated, i.e., when the
investor repays the loan [Skattestyrelsen, 2021].

5.3 Baseline Model

The baseline model is our best estimate of the most realistic parameterization of the model to
yield the most realistic outcome of the different investment strategies. We implement a gearing
cap of 1:1, i.e., an investor can borrow a maximum of 1 DKK for every 1 DKK of savings he
provides. We estimate the parameters of the Merton rule with the following empirical data.
The expected yearly returns based on historical returns µy is 7.6%. We set the risk-free rate
rf as the average effective yield of danish government bonds for the past 15 years, which is
2% [Danmark Statistisk, 021b]. The margin rate rm is the average percentage paid on our two
kinds of leverage, which is 2.3%. The yearly investment fee, ν is given as 0.2%, and lastly, the
volatility of the stock,σ2

y is given as the empirical variance of the S&P500, which is 0.0284.
Finally, we set the level of constant relative risk aversion γ to 2. This allows us to calculate
π(rm) and π(rf ) as

π(rm) =
1

2

0.076− 0.002− 0.023

0.0284
= 93.41% π(rm) =

1

2

0.076− 0.002− 0.02

0.0284
= 98.7%

The skewed− tη,κ GJR-GARCH(1,1) parameter estimates are found via Maximum Likelihood
estimation, which is given as

rt = 0.0311
(3.606)

+ εt

σ2
t = 0.0154

(5.879)
+ 0.001

(0.0001)
ε2t−1 + 0.8966

(83.066)
σ2
t−1 + 0.1831

(9.779)
ε2t−1I{εt−1<0}

The parameter estimates for the skewed Student’s t-distribution, are η = 7.085(12.052) and
λ = −0.1048(−7.104) with t-values reported in parenthesis.

3In Danish ’lagerbeskatning’
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To be in line with [Ayres and Nalebuff, 2008], we assume that investors invest 5% of their
disposable income, where the growth of income follows an interpolation of disposable income
by age, such that the amount to be invested each period follows a realistic development
[Danmark Statistisk, 021a].

6 Empirical Section

This section presents empirical results of the different investment strategies for the baseline
model. We also explore various changes to the baseline model parameters to test the robustness
of the strategies. In addition, we investigate the risk and benefits associated with the dual-
and single-target strategies.

6.1 Results from the Baseline model

In table 3, we report the quantiles of terminal wealth and levels of π from the Monte Carlo
simulations of the GJR-GARCH(1,1) simulations. We note that the median terminal wealth
of the dual- and single-target strategies are nearly identical. Both are 37% higher than the all-
stock strategy and 53% higher than the life-cycle strategy. In fact, in 95% of simulations, the
dual- and single-target strategies yield higher terminal wealth than the all-stock strategy. We

Table 3: Terminal wealth of strategies fromMonte Carlo simulations

Dual-target Single-target All-Stock Life-cycle

Initial π 93.41% 93.41% 100% 90%
Final π 98.70% 93.41% 100% 50%
Mean 3,838,926 3,733,564 2,708,186 2,378,441

10th pct. 792,156 827,907 701,323 834,364
25th pct. 1,578,737 1,619,017 1,253,909 1,236,068
Median 3,005,684 2,996,312 2,191,834 1,965,585
75th pct. 5,058,007 4,923,404 3,555,740 3,018,214
90th pct. 7,912,987 7,578,566 5,274,542 4,401,267

Defaulted % 1.12% 1.12% 0% 0%

Notes: The results are based on 10.000 Monte Carlo simulations.

see a similar picture in the box-plot figure 5a. Here, the dual- and single-target strategies have
higher 25th, 50th, 75th and 90th quantiles than the all-stock and life-cycle, and are roughly equal
to the life-cycle strategy in the 10th quantile. However, the dual- and single-target strategies
have a default-risk as 112 out of 10.000 investors default, which we will explore in section 6.4.1
These results contrast to [Ayres and Nalebuff, 2008] who found that the dual and single-target
strategies stochastically dominate the all-stock and life-cycle strategies. As we will discuss in
section 6.2.4, this is partially due to differences in simulation methods.
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Figure 5: Strategy performance in the baseline model

(a) Distribution of terminal wealth (b) Density of Sharpe Ratios

Note: Note that we have removed some observations with very high terminal wealth in the box-plot.
Dotted lines on the Sharpe ratio plot indicate mean values.

The dual- and single-target strategy for the baseline model have very similar outcomes with
the 25th, 50th and 75th quantile being very similar. These two strategies differ in figure 5a and
table 3 where there is a general tendency for the single-target strategy to be more centered
around the median than the dual-target strategy. These differences result from the dual-target
strategy changing its allocation to the risky asset in phase four to 98.7% compared to 93.41%
in the single-target strategy. Thus, the volatility of the dual-target strategy is higher than in
the single-target strategy. I.e., in simulations where the single-target strategy performs poorly,
the dual-target performs even worse and vise versa for good performances. This result is also
evident from the box plot in figure 5a where the dual-target (blue) spans a greater distance
from minimum to maximum than the single-target (green).

Table 4: Average and [median] Sharpe Ratios and Relative Risk Premium (%)

Dual-target Single-target All-stock Life-cycle

Sharpe Ratio 0.161[0.174]
(0.90)

0.159[0.171]
(0.90)

0.152[0.146]
(0.88)

0.124[0.119]
(0.92)

Relative Risk Premium 102.26% 87.76% 132.86% 50.13%

Note: Standard errors of the Sharpe Ratios in (·)

In table 4, we report two measures of risk-adjusted performance. Again, we note almost
identical average Sharpe ratios of the dual- and single-target strategies at 0.161 and 0.159, re-
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spectively. Both outperform the all-stock strategy and the life-cycle strategy, yielding average
Sharpe ratios of 0.152 and 0.124, respectively. However, the median Sharpe ratio is noticeable
higher than the average for the dual- and single-target strategies. More investors end up with
negative terminal wealth, thus skewing the distribution to the left, as shown in figure 5. In
conclusion, the leveraged strategies yield a better risk/reward payoff than the unleveraged
strategies, both on average and on the median.
In table 4, we see that investors demand the highest relative risk premium of 132.86 % for the
all-stock strategy. At the other end, investors unsurprisingly demand the lowest relative risk
premium of 50.13% for the conservative life-cycle strategy, with the dual- and single-target
strategies in between these two.
To summarize, the dual- and single-target strategies produce higher terminal wealth than the
all-stock and life-cycle strategies, in the vast majority of simulations, with only a negligible risk
of default. The dual- and single-target strategies are pretty similar, with the dual-target out-
performing the single-target at the cost of slightly greater risk. The leveraged strategies yield
a higher average and median risk-adjusted return than the life-cycle strategy, but investors
demand a greater relative risk premium.
We will explore the default risk and the reasons for the leveraged strategies’ out-performance
in the following two subsections.

6.1.1 Default risk

Any investor employing a leveraged strategy is liable to default. In an unleveraged strategy,
the investor can only lose the invested amount. In contrast, an investor using a leveraged
investment strategy can lose the borrowed amount and the amount the investor invested out
of pocket. We assume that the investor has defaulted when his cash and equity positions
become worthless.
Using this definition, 112 out of the 10.000 investors default in our simulations during the
entire 50-year investment horizon. The default rate of 1.12% is the same for the dual- and-
single-target strategy, as investors have paid off their debt when the strategies diverge. This
result is in contrast to [Ayres and Nalebuff, 2008] who found that no investor defaulted in
their simulations. A default rate of 1.12% is in itself remarkably low considering the quite
aggressive 1:1 leverage cap. But, compared to the all-stock and life-cycle strategies default
rate of 0%, defaults are a definite drawback for the dual- and single-target strategies.
To explore what the typical market looks like for a defaulted investor, we take the average
outcome of the 112 cases and plot the results in figure 6. We plot the mean of debt, total value
of cash and equity positions, and total value minus total debt (Total net value). Additionally,
the mean cumulative gross returns are plotted on the secondary axis. We see that the average
defaulted investors are fully leveraged around 2035 and have positive portfolio values. Then
the investors experience highly negative market returns, which is evident by the cumulative
return falling drastically around 2032-2040, causing the net value of the portfolio to plummet.
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Figure 6: Average strategy development for defaulted investors following the dual-target
strategy

Note: Only the 112 investors who defaulted are plotted in this graph and the last 20 years are cut
away

This, in turn, raises their interest costs as much less collateral covers the outstanding debt,
meaning the investors are effectively more aggressively leveraged. The investors cannot pay
off the debt (red line), neither by selling the risky asset nor by using their savings. Thus,
they will default immediately following the negative market shock or slowly over time as the
portfolio is sold off to repay the debt.
To summarize, extremely adverse market developments and very unlucky timings are needed
for an investor to default. If, on the contrary, the investor is hit with a very negative return
when his debt is repaid, the investor only loses parts of his equity position, similar to the
all-stock and life-cycle strategies, and will not default.

6.1.2 Temporal diversification

Does the dual-target strategy achieve temporal diversification? One way to gauge this is to
look at how much money the investor allocates to the risky asset on average across time.
We have plotted both the monthly net investments and the cumulative version of the same
data in figure 7. As the dual- and single-target strategies are very similar in net investments,
we only plot the dual-target strategy. Net investments for the unleveraged strategies are the
baseline savings since no leveraged is used. In the plot, the difference between the leveraged
and unleveraged strategies is clear. Money is borrowed during the first ten years to increase
stock exposure at a young age in the leveraged strategy. Quickly after that, the loans are
being repaid. We note that the unleveraged strategy takes about ten more years before it
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catches up with the total level of equity in the levered strategy. So, in essence, leverage allows
the investor to get a 10-year head start on stock exposure relative to the unleveraged strategy.
The leveraged investor has a more even exposure towards stocks and is thus more temporally
diversified than the unleveraged investor.

Figure 7: Empirical temporal diversification

(a) Net monthly investments (b) Cumulative sum of net monthly investments

Another way to assess temporal diversification is by plotting the average stock market exposure
across time. We define stock market exposure in the individual simulations as portfolio value
divided by terminal wealth. This means all simulations of the all-stock strategy, by definition,
end in 100% stock market exposure. In contrast, the dual-target strategy ends slightly below
100% as the target stock market exposure π(rf ) = 98.7%. We have plotted this in figure
8 along with the difference in stock market exposure in percentage. To reduce clutter, we
omitted the single-target- and life-cycle strategy. In the average simulation, we see that the
dual-target strategy does spread stock market exposure across time compared to an all-stock
strategy. After the first tax payment, the difference is about 40% more stock market exposure
for the first 15 years. Afterward, the difference fades out, and the investor eventually ends up
less exposed than in the all-stock strategy. This is only possible because of the debt obtained
by the investor in the leveraged strategies. We see in the graph to the right that total debt
peaks around 2035. This is around the same time the difference in market exposure is the
highest, between the dual-target strategy and the all-stock strategy. Does this mean the
leveraged investor obtains reduced risk compared to an all-stock strategy? Seemingly, yes.
The benefits of temporal diversification seem to outweigh the mechanically increased risk that
comes with higher leverage. As seen in figure 5 the average Sharpe Ratio is clearly higher
for the leveraged strategies, meaning the risk/reward trade-off is better than the all-stock
strategy. One possible explanation for this could be the increased temporal diversification.
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Figure 8: Underlying mechanism of temporal diversification

(a) Difference in stock market exposure (b) Debt progress in the dual-target strategy

6.2 Variations from the Baseline Model

The results presented in the section above come from our baseline model parameters. But,
to be thorough, we will now consider variations of the parameters to test the robustness of
our results and examine its strengths and weaknesses. Specifically, we vary the risk aversion
of investors, the margin rate, the investment horizon, and finally, the data generating process
used for simulating market returns.

6.2.1 Level of Risk aversion

A vital component of the Merton fraction is the investor’s level of relative risk aversion, γ.
Recall that the higher the level of relative risk aversion is, the lower the optimal fraction
invested in the risky asset, π∗, is and vice versa by equation (2). Increasing the relative risk
aversion means that the investor will allocate less of his wealth to the risky assets, as he is now
more risk-averse. In figure 9, we see this, as the fraction invested in stocks π(ri) for i = m, f ,
decreases exponentially as γ increases.
Changing the relative risk aversion will naturally affect the dual- and single-target strategies
but not the all-stock and life-cycle strategies. We expect investors with higher risk aversion
to earn lower terminal wealth on average and lose less in bear markets. The lower allocation
into the risky asset naturally changes the terminal wealth of investors quite drastically, as seen
in figure 10. The 25th, 50th and 75th quantile all fall as risk aversion increases due to lower
allocation in the risky asset. This also reduces default risk with 112, 76, 72, and 59 investors
defaulting for γ being 2, 3, 4, and 5, respectively, which aligns with the investors’ higher risk
aversion. Lastly, consider the performance measurements in table 5, where the Sharpe ratio
decreases as relative risk aversion, γ, increases due to lower allocation into the risky asset.
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Figure 9: How does π change with the level of risk aversion, γ

Figure 10: Terminal wealth when varying risk aversion γ

(a) Dual-target (b) Single-target

The lower risk can seemingly not outweigh the drop in returns. The relative risk aversion is
not an especially useful measure when varying γ. Recall that we also used γ to calculate π,
which determines the targeted stock market exposure. Changing γ would thus affect both
stock market exposure and the measure of the certainty equivalent used for calculating the
relative risk premium at the same time. This makes the measure unsuitable for comparisons
across γ’s.
To conclude, the terminal wealth increases as the level of risk aversion decreases by greater
allocation in the risky asset. This likewise increases the default rate and the Sharpe ratio.
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Table 5: Average and [median] Sharpe Ratios when varying γ

Dual-target Single-target All-stock Life-cycle

γ = 2 0.161[0.174]
(0.090)

0.159[0.171]
(0.090)

0.152[0.146]
(0.088)

0.124[0.119]
(0.092)

γ = 3 0.145[0.155]
(0.077)

0.143[0.153]
(0.077)

0.152[0.146
(0.088)

] 0.124[0.119]
(0.092)

γ = 4 0.132[0.141]
(0.070)

0.130[0.139]
(0.070)

0.151[0.146]
(0.088)

0.124[0.119]
(0.092)

γ = 5 0.123[0.131]
(0.064)

0.121[0.130]
(0.063)

0.151[0.146]
(0.088)

0.124[0.119]
(0.092)

Note: Standard errors of the Sharpe Ratios in (·)

6.2.2 Steeper yield curve

The margin rate, rm, is important for the leveraged strategies, both for determining interest
costs and for setting the optimal allocation into the risky asset π(rm). Both channels have
a major impact on the strategies’ performance. One might expect the performance of the
leveraged strategies to decrease drastically for a higher margin rate as borrowing money is
more expensive. However, this is not the case, at least not for the dual-target strategy.

Figure 11: How does π change with increasing margin rates

In figure 11, we see the allocation into the risky asset falls as the margin rate increases.
Intuitively, paying off the investor’s debt is a better alternative to the risky asset when margin
rates increase. We see that higher margin rates definitely harm both strategies, but more so
for the single-target. This is because the dual-target strategy changes its allocation to depend
on rf in phase 3, which the single-target strategy does not. This has a dramatic effect on
the single-target strategy. All the quantiles of terminal wealth in table 12 decrease rapidly
as the margin rate increases, as does the Sharpe ratio, as seen in table 6. A similar trend
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Figure 12: Terminal wealth when varying the margin rate

(a) Dual-target (b) Single-target

holds for the dual-target strategy, although much less profound. The Sharpe ratio barely falls,
because when the investor has deleveraged, he increases his allocation to the risky asset to
π(rf ) = 98.7%. The dual-target strategy is, therefore, more robust against changes to the

Table 6: Average and [median] Sharpe Ratios and Relative Risk Premiums by varying margin
rates

Sharpe Ratio Relative Risk Premiums

Dual-target Single-target Dual-target Single-target

2.3% margin rate 0.161[0.174]
(0.090)

0.159[0.171]
(0.090)

102.26% 87.76%

3% margin rate 0.161[0.172]
(0.088)

0.151[0.164]
(0.086)

108.703% 61.09%

4% margin rate 0.160[0.170]
(0.085)

0.140[0.152]
(0.079)

102.313% 19.85%

5% margin rate 0.159[0.167]
(0.081)

0.126[0.136]
(0.071)

102.313% -6.345%

Sharpe Ratio Relative Risk Premiums

All-stock Life-cycle All-stock Life-cycle
All margin rates 0.152[0.146]

(0.088)

0.124[0.119]
(0.092)

132.68 % 50.13 %

Note: Standard errors of the Sharpe Ratios in (·)

cost of borrowing money. Additionally, increases in the margin rate have little impact on the
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default risk, with 1.15%, 1.20%, 1.20%, and 1.15% investors defaulting with margin rates of
2.3%, 3%, 4%, and 5%.
Why do we not observe an increase in default rates? Increasing the margin rate will, ceteris
paribus, cause more investors to default, but investors will also allocate less wealth into risky
assets because of the Merton fraction, causing fewer investors to default. The two effects seem
to cancel each other out roughly.
Finally, consider the relative risk premiums in table 6, where the meager allocation to stocks
in the single-target strategy at high margin rates is evident. Here, the relative risk premium
for the single-target strategy is even lower than for the life-cycle strategy at a margin rate of
4%.

6.2.3 Varying investment horizon

Our default investment horizon for the investor is 50 years, which is a very long horizon. Thus,
an interesting question is whether the leveraged strategies are still viable for shorter horizons.
When the horizon is shorter, the investor might not reach the last or even second-last stage
of either strategy, which could be detrimental to the average performance. In figure 13, we

Figure 13: Terminal wealth of leveraged strategies by investment horizon

(a) Dual-target (b) Single-target

see that the volatility in terminal wealth increases greatly as the investment horizon increases.
This is hardly surprising as the longer the investment horizon, the greater the number of
feasible outcomes.
The risk of default increases linearly with the investment horizon, with 73, 91, 112, and 137
investors defaulting for 30, 40, 50, and 60 years respectively. This is likely due to investors who
have been hit by significant negative returns when fully geared and are afterward struggling to
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pay off their debt. As time goes on, they will eventually default, which explains the increased
number of defaults for longer time horizons.
Lastly, the dual- and single-target strategy barely differ for horizons of 30 and 40 years. Recall,
that phase 3 of the dual-target strategy is to increase the allocation to the risky asset from
π(rm) to π(rf ) where the single-target sticks to π(rm). Thus, the dual-target strategy doesn’t
have enough time to gain a sizable advantage since the difference between π(rf ) and π(rm) is
relatively short in our baseline model. However, for horizons of 50 and 60 years, the dual-target
strategy slightly outperforms the single-target strategy.
Consider now the performance measures in table 7. The relative risk premium favors the
life-cycle strategy for all horizons tested. The all-stock strategy favors short horizons. The
dual- and single-target outperform the all-stock in all but the 30-year horizon, with the dual-
target relative risk premium increasing the most. In terms of Sharpe ratios, the dual- and
single-target strategy outperforms the all-stock and life-cycle strategies for all horizons. This
gap increases the shorter the investment horizon.

Table 7: Average and [median] Sharpe Ratios and Relative Risk Premiums by investment
horizon

Sharpe Ratio

Dual-target Single-target All-stock Life-cycle

60 years 0.160[0.173]
(0.087)

0.157[0.170]
(0.086)

0.159[0.155]
(0.079)

0.131[0.126]
(0.085)

50 years 0.161[0.174]
(0.090)

0.159[0.171]
(0.090)

0.152[0.146]
(0.088)

0.124[0.119]
(0.092)

40 years 0.165[0.178]
(0.095)

0.162[0.176]
(0.094)

0.143[0.139]
(0.095)

0.117[0.113]
(0.099)

30 years 0.170[0.184]
(0.102)

0.169[0.182]
(0.101)

0.134[0.129]
(0.107)

0.110[0.105]
(0.110)

Relative Risk Premiums

Dual-target Single-target All-stock Life-cycle
60 years 121.51% 93.20% 176.31% 70.97%
50 years 102.26% 87.76% 132.68% 50.13%
40 years 70.25% 61.29% 78.58% 34.50%
30 years 55.69% 49.37% 48.77% 23.06%

Note: Standard errors of the Sharpe Ratios in (·)

To summarize, the dual- and single-target are viable strategies for both short and longer
horizons.
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6.2.4 Simulation Method

A departure in this paper from similar literature is to use a GJR-GARCH(1,1) process to
model the volatility of returns. Some previous literature assumes that market returns are
IID, which is not empirically correct. As we argued in section 3, an empirical setup with
skewed− tη,λ GJR-GARCH(1,1) is a more realistic data generating process (DGP) out of the
ones presented. To test the significance of changing the data generating process, we compare
the strategies simulated from a skewed− tη,λ GJR-GARCH(1,1) process to simpler and more
naive processes like drawing returns from a fitted normal- or Student’s t-distribution.

Figure 14: Terminal wealth of strategies by data generating process

(a) Dual-target (b) Single-target

From figure 14, it is clear that the simulation method has a major impact on the tails of the
distribution of terminal wealth. When we draw returns from an empirical sample with replace-
ment, or a normal distribution, no investors following the dual- and single-target strategies
have terminal wealth below 0, which also means zero investors default in both cases. Our find-
ing of no defaults aligns with the results from [Ayres and Nalebuff, 2008] where zero investors
defaulted in their simulations with ’draws with replacement.’ The reason for no defaults is the
non-fat tails of the normal distribution and the IID returns of draws from replacement. These
distributions cause fewer extreme events to happen (See figure 4), and investors are thus less
likely to default due to unpayable debt.
Moving on to the case where the data generating process is an IID student’s t distribution,
several investors now have a negative terminal wealth and 78 investor default when using this
data generating process. The IID student’s t-distribution causes these defaults because of its
fatter tails compared to the normal distribution or ’draws from replacement.’ Comparing the
IID student’s t to the GJR-GARCH(1,1) process, we see that 112 investors default. Note
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Table 8: Average and [median] Sharpe ratios and Relative risk premiums by data generating
process

Sharpe Ratio

Dual-target Single-target All-stock Life-cycle

GJR-GARCH 0.161[0.174]
(0.090)

0.159[0.171]
(0.090)

0.152[0.146]
(0.088)

0.124[0.119]
(0.092)

Student’s t 0.196[0.199]
(0.064)

0.194[0.197]
(0.064)

0.134[0.129]
(0.076)

0.115[0.108]
(0.078)

Normal 0.186[0.187]
(0.049)

0.184[0.185]
(0.048)

0.120[0.117]
(0.068)

0.104[0.100]
(0.070)

With replacement 0.194[0.196]
(0.051)

0.192[0.195]
(0.050)

0.123[0.119]
(0.069)

0.106[0.102]
(0.070)

Relative Risk Premiums

Dual-target Single-target All-stock Life-cycle
GJR-GARCH 102.26% 87.76% 132.68% 50.13%
Student’s t 49.48% 44.68% 45.53% 30.92%
Normal 46.35% 42.62% 35.58% 24.65%
With replacement 47.68% 43.69% 36.71% 24.94%

Note: Standard errors of the Sharpe Ratios in (·)

that these two distributions are almost identical but have very different correlation structures.
This difference means an additional 34 investors default by adding a more realistic correlation
structure between returns. Furthermore, the 25th quantile is noticeably lower, and the 75th

quantile is likewise higher for the GJR-GARCH(1,1) than for the student’s t-distribution.
Lastly, consider the performance measurements in table 8. We see that adding the GJR-
GARCH(1, 1) model in the data generating process significantly affects the relative risk premi-
ums. The risk premium increases greatly for all but the life-cycle strategy. For all the non
GARCH data generating processes, the dual- and single-target strategies have the highest risk
premiums, possibly due to higher default rates and larger variations in terminal wealth. The
dual- and single-target strategies yield a higher Sharpe ratio across all four data-generating
processes tested, indicating that the leveraged strategies outperform on a risk-adjusted basis
regardless of the data generating process. The GJR-GARCH process yields the lowest average
Sharpe ratio of all the different processes, likely due to its higher default rate.
To conclude, the choice of data generating process for the returns has a significant impact
on the default rate, which the addition of the GJR-GARCH(1,1) model increased to 1.12%
from 0%. Thus, default risk is a bigger problem than [Ayres and Nalebuff, 2008] argued.
Furthermore, the choice of data generating process has a big impact on performance measures,
with the Sharpe ratio falling quite drastically if returns are not IID.
Additionally, for the GARCH and student’s t process, the distribution of terminal wealth is
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shifted slightly downwards compared to the normal distribution or draws with replacement
despite having similar mean returns with lower 25th quantile. This is yet again a result of the
fat tails of the student’s t-distribution.

6.3 Backtesting using historical data

A natural question arises when evaluating performance. How would the model have performed
in the past, given the realized markets of the past century? To test this, we plug in data from
Robert Shiller’s website [Shiller, 2021]. Similar to the method we used in simulating future
returns, we also calculate a 30-year rolling average of market returns, market volatility, and
the risk-free rate to calculate historical π(rf ) and π(rm).

Figure 15: Using Robert Shillers data

(a) Rolling 30 year averages of macro variables (b) Resulting π(rf ) and π(rm)

As is evident from figure 15, the strategy breaks down had it been calibrated using a rolling
window of 30 years during many parts of the previous century. Particularly problematic are
the many periods with negative values of π. A negative π implies building a short position in
equities - a questionable strategy for a leveraged long-term investor. One possible remedy for
this could be to run the strategy with the average values of the entire sample period from 1871
to 2020. Doing this, we get π(rf ) = 29.71% and π(rm) = 20.09%. Another way around this
could be to enforce our baseline values of π(rf ) = 98.70% and π(rm) = 93.41% irrespective of
the actual market conditions at the time. To test the strategy, we simulate a 50-year strategy
from January 1871 to January 1921 and roll this window forward until the present day. By
doing this, we obtain 1200 simulations. We plot the terminal wealth for every simulation of
both approaches below:
On the left-hand chart, we note that at no point do the leveraged strategies outperform the
unleveraged strategies. This is probably due to the very conservative stock exposure of around
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Figure 16: Terminal wealth of strategies by ending year with historical backtesting

(a) π(rf ) = 29.71% and π(rm) = 20.09% (His-
torial averages)

(b) π(rf ) = 98.70% and π(rm) = 93.41%

(Baseline)

25%. On the right-hand side, we see some periods, especially from 1965 until 1995, with the
leveraged strategies outperforming the unleveraged strategies. However, there are also periods
with performance on par or below the traditional strategies. The average outperformance
of the levered strategies is around DKK 50.000, so not a large average gain by any means.
Interestingly, we find that no investors would have defaulted during this period, regardless of
the two sets of π’s we use. This is identical to the findings of [Ayres and Nalebuff, 2008] who
also report zero defaults in their cohort simulations. However, contrary to [Ayres and Nalebuff,
2008], We don’t find that the levered strategies outperform the unleveraged strategies in all
years. This is likely due to a different margin rate.

Table 9: Average and [median] Sharpe Ratios and Relative Risk Premiums of historical
backtest using baseline π(rf ) and π(rm)

Dual-target Single-target All-stock Life-cycle

Sharpe Ratio 0.131[0.152]
(0.054)

0.130[0.151]
(0.054)

0.096[0.097]
(0.030)

0.082[0.087]
(0.029)

Relative Risk Premium 36.54% 36.73% 31.08% 18.69%

Note: Standard errors of the Sharpe Ratios in (·)

The leveraged strategies perform well regarding risk-adjusted returns when looking at the
Sharpe ratios, similar to our findings in the baseline model simulations. We find Sharpe ratios
around 0.130 for the leveraged strategies - slightly higher than the Sharpe ratio for the all-
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stock strategy of 0.096 and 0.082 for the life-cycle strategy. In terms of relative risk premium,
the leveraged strategies are only deemed slightly more risky by the risk-averse investors than
the all-stock strategy.

7 Discussion

The curious reader might be slightly puzzled as to why our risky asset is built on S&P 500
returns instead of a Danish index like the OMXC25 index when investors worldwide exhibit
strong home bias, i.e., they favor local stocks.
The reasons for choosing the S&P 500 are twofold. Firstly, to more closely compare our results
to [Ayres and Nalebuff, 2008] we use the same market index as them. Secondly, the S&P 500 is
a broad index with 500 stocks and is thus more diversified than OMXC25, which only contains
25 stocks concentrated around biotech/health and industry. If we used the OMXC25, we could
risk that the strategy’s returns stem from the development in these industries rather than the
market as a whole. Following this logic, why not use an even more diversified global index, say,
the MSCI world index, as a reference? We have a few reasons. First, the MSCI world index
and other global indices mainly consist of US large-cap stocks, so there is actually a significant
overlap with the S&P 500. Second, the S&P 500 has a far longer history allowing for more
reliable estimates of the statistical properties. Third, the S&P 500 is broadly accepted as a
close proxy for the market portfolio in the literature.
Another critique of our results might be that we have assumed zero trading costs. However,
we think it is a reasonable assumption. First, we recommend investments in passive liquid
ETF’s tracking the S&P 500 or a similar broad index. This means spread costs are virtually
eliminated. Second, commission-free brokers are becoming more and more widespread, with
several available in the US and EU. In other words, it is so cheap to be a passive index
investor today, so even if we included a small fee, we would not expect it to significantly alter
our results, even in the strategies with monthly rebalancing.
The combination of leverage and risk-averse investors initially sounds counter-intuitive. Why
would a rational investor, who dislikes risk, borrow money to invest in stocks, effectively
shorting the risk-free asset to long stocks? It could be a sensible idea for a few reasons. Firstly,
although a 1:1 gearing ratio of current savings might seem high to a young investor, the amount
of money borrowed is insignificant compared to his cumulative life savings. Secondly, gearing
is not permanent and is used to even out exposure to the stock market over time. In this way,
gearing might decrease risk, which is in line with being a risk-averse investor.
Continuing with the theme of a risk-averse investor. We only consider cases for the constant
relative level of risk aversion, γ ∈ {2, 3, 4, 5}, such that the investor is moderate to highly risk-
averse. One might reasonably argue that we should consider cases where γ was lower, like γ = 1

resulting in investors having log utility or even γ = 0 where investors are risk-neutral. The
reasons for not considering these cases are twofold. First, investors are empirically risk-averse,
so modeling risk-neutral investors would not be as relevant as modeling risk-averse investors.
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Secondly, for lower values of γ like γ = 1.5, we have that π(ri) > 1 such that investors would
never pay off all their debt while investing. While there is not anything inherently wrong
with this, the focus of this paper is whether an investor can use leverage to achieve higher
risk-adjusted returns. Thus, cases where the investor is leveraged throughout his life-cycle are
not within this paper’s scope, so we do not consider lower values of γ.
Compared to [Ayres and Nalebuff, 2008] we have left out discounting in our performance
measurement. One could argue that discounting the strategies would make comparing the
choices today easier. However, since we are primarily interested in the relative performance of
the strategies, discounting didn’t offer any benefits, as discounting, at any rate, would never
qualitatively change our results. Due to this, we decided not to prioritize space on discounting.
One might argue that our results for risk-averse investors rest upon CRRA utility. But we
primarily use the CRRA utility function to derive the optimal allocation π∗. CRRA preferences
are just one way to model the risk-aversion of investors. Another way is a more simple mean-
variance utility function. Using this utility function to get the optimal allocation π∗, the π∗

might change as compared to the CRRA approach. However, it would not change the market
dynamics and diversification principles. Thus the main result of temporal diversification and
its benefits to young investors would remain largely unchanged.
Lastly, we use a risk-free rate, rf of 2%, roughly the historical average yield of a 10-year Danish
government bond. Given the current rate of a Danish government bond, one might argue that
our risk-free rate rf should be closer to 0%. We argue that the risk-free rate being 0% for
most of the next 40-60 years is unlikely. Therefore, we choose the average yield of government
bonds, which is also standard in the literature. In any case, what constitutes a natural or
equilibrium level for the risk-free rate is a topic of continuous research, and no definitive right
answer exists. Thus, forecasting the risk-free rate decades from now is nearly impossible.
In the parameterization of our baseline model, we use the 15-year historical average to determ-
ine the risk-free rate rf but use current rates to determine the margin rate rm. This seems
inconsistent. However, we argue that the two rates are used in two different time horizons.
rf affects the strategy in all periods, while rm is only relevant for the first 15-20 years in the
majority of our simulations. We, therefore, chose to bias the estimate of rf toward historical
averages and rm toward present rates. Even if our estimate of rm is too low, we also cover the
case of a steeper yield curve in the analysis and find that the leveraged strategies still out-
perform the rest. If our estimate of rf is too high, the leveraged strategies actually perform
better, as the lower risk-free rate is detrimental to the life-cycle strategy. At the same time,
it increases stock exposure in the leveraged strategies. Simulations also confirm this, but we
were limited by the space available to show it.

8 Conclusion

In this paper, we model leveraged investment strategies for young Danish students in a market
where a constant mean GJR-GARCH(1,1) with skewed tη,λ-distributed error terms generates
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simulated returns. We test leveraged dual- and single-target strategies and find that they
yield higher terminal wealth than the unleveraged all-stock and life-cycle strategies in 95% of
simulated markets. The performance somewhat persists in the risk-adjusted measure, where
the mean Sharpe ratio is 0.161 and 0.159 for the dual- and single-target strategies compared to
the 0.152 and 0.123 for the all-stock and life cycle strategies. The relative risk premiums favor
the life-cycle strategy and deem the all-stock single the riskiest, with investors demanding
the highest risk premium of 132.68% for the all-stock strategy. The dual- and single-target
strategies lie in the middle with 102.26% and 87,76%, respectively. These results are in slight
contrast to the results of [Ayres and Nalebuff, 2008], who find that the dual- and single-target
strategies stochastically dominate the more traditional all-stock and life-cycle strategies. This
is likely due to our usage of a more realistic data-generating process with fatter tails.
There are several leverage options available to young investors, some more attractive than
others. Students loan (SU loans) combined with portfolio loans seem the most attractive and
available option with a low effective interest rate of around 2.3%. As such, a leveraged strategy
is entirely feasible for young students in Denmark.
The dual- and single-target strategies spread out exposure to stocks as the leverage taken
allows for more even exposure to the risky asset. The risk-reducing effect from temporal
diversification outweighs the additional risk from leveraging and the possibility of default,
where 1.12% of investors default in the baseline setting. This is evident from the higher
Sharpe ratios of the leveraged strategies.
From 50-year rolling window backtests of the strategies, we conclude that the leveraged
strategies would historically have faired well on a risk-adjusted basis, judging by the higher
Sharpe ratio compared to unleveraged strategies. When comparing the strategies on average
terminal wealth, the leveraged strategies only come out slightly on top. Importantly, zero
investors would have defaulted during our sample period from 1871 to 2021.
Investors, who default, are usually hit by highly adverse market returns around their period
of maximum indebtedness such that the servicing of their debt causes them to default. The
default rate is very dependent on the data generating process as when returns are ’drawn with
replacement’ or a fitted normal distribution, no investor defaults.
Would we recommend the dual- and single-target strategies to young, risk-averse, danish
students? Based on the results from our simulations and the above conclusion, yes. However,
the dual- and single-target strategies do have some additional drawbacks. They are more
complex with their frequent rebalancing compared to the all-stock and partially the life-cycle
strategies. A young, risk-averse investor needs to be willing to spend time managing the
strategy. We recommend a more simple single-target strategy for an investor unwilling to
spend the time required to manage the dual-target strategy. Even though we have shown that
the strategies are robust against a rise in margin rates and differing data generating processes,
this recommendation is still conditional on our expectation of the risk-free rate, the margin
rate, and the development of the market, which we cannot know with certainty.
If the leveraged strategies seem too complicated or risky, it is, in any case, a good idea to start
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investing early, if just in a normal all-stock strategy. As shown in our theoretical section, the
benefits of time diversification are present regardless of using our leveraged strategy or not -
the leveraged strategies merely intensify them.
The model driving simulated market returns is a GJR-GARCH model with skewed tη,λ-
distributed error terms. This allows for one risky asset. However, the market consists of
multiple different stocks and other asset classes. A natural avenue for future research is to
allow for other assets and use a Multivariate GARCH model (MGARCH) to model their
returns.
Another idea for future research is to leave the Merton fraction and use a more complex
allocation method by making π(·) dynamic over time. This will allow for greater flexibility of
the investment strategies, which could offer new potential benefits.
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A Appendix

A.1 Skewed Student’s t-distribution

The following density characterizes the Skewed Student’s t-distribution

F (z|η, λ) =


bc

(
1 + 1

η−2

(
bz+a
1−λ

)2)− η+1
2

z < −a/b

bc

(
1 + 1

η−2

(
bz+a
1+λ

)2)− η+1
2

z ≥ −a/b
, (X)

and a, b and c are given by

a = 4λc

(
η − 2

η − 1

)
, b =

√
1 + 3λ2 − a2, c =

Γ
(
η+1
2

)√
π(η − 2)Γ(η

2
)
. (X)

λ dictates the level of skewness and for λ > 0 the distribution is skewed to the right.η de-
termines the fatness of the tails and the number of moment which are finite as such η > 2 for
the variance to be finite and Γ(·) is the Gamma function. Note that for η →∞ the student t
distribution converges to a normal distribution.4

A.2 Python Code

All the code used to generate the simulations and plots is freely available at
https://github.com/neriksen/applied_finance

A.3 Parameters for polynomial fit of disposable income

c = 9000, slope = 0.014885, convexity = −0.0000373649, jerk = 0.000000025

p(x) = c+ x · slope · c+ x · convexity · c+ x · jerk · c (X)

p(x)infl = c+ x · slope · c · (0.03/12) + x · convexity · c+ x · jerk · c (X)

Where c is the constant, interpreted as the monthly disposable income as a 20 year old and x
is the month starting age 20 being equal to x = 0

4[Hansen, 1994], Autoregressive conditional density estimation, p.708-709
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